Pseudolabeling Contrastive Learning for Semisupervised Hyperspectral and LiDAR Data Classification

被引:2
|
作者
Li, Zhongwei [1 ]
Wang, Yuewen [2 ]
Wang, Leiquan [2 ]
Guo, Fangming [1 ]
Yang, Yajie [2 ]
Wei, Jie [2 ]
机构
[1] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Laser radar; Contrastive learning; Accuracy; Attention mechanisms; Hyperspectral imaging; Data mining; feature fusion; hyperspectral images (HSIs); light detection and ranging (LiDAR) data; remote sensing; Yellow River Delta; FUSION NETWORK;
D O I
10.1109/JSTARS.2024.3452494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Elevation information from light detection and ranging (LiDAR) data relieve the phenomenon of "same spectrum with different object" in hyperspectral images (HSI) classification. Consequently, HSI and LiDAR joint classification is a significant research topic. However, existing methods encounter several challenges. Primarily, there exists a deficiency in intraclass information interaction and underutilization of discriminative feature. Furthermore, the process of labeling samples is time-consuming and laborious. To solve the aforementioned issues, a classification method based on pseudolabeled contrastive learning is proposed to exploit substantial amounts of unlabeled information in order to enhance intraclass information interaction. The proposed method is divided into two stages for semisupervised classification. In the first stage, an unsupervised feature extraction network is designed to improve the interaction of features from multimodal data. A multimodal data cross-attention module is proposed to enhance the interaction of multimodal information at corresponding locations. Exploiting pseudolabeling contrastive learning module facilitates the interaction of information between intraclass objects. In the second stage, supervised classification with a limited number of labeled samples is performed. The multisource discriminatively consolidate feature module is designed to generate discriminative features, which are used to guide the fusion feature enhancement process. Apart from this, this module leverages multiscale features to expand the receptive field. Tested on both self-constructed and public datasets, the proposed method provides higher classification accuracy than some existing methods with a limited amount of labeled samples.
引用
收藏
页码:17099 / 17116
页数:18
相关论文
共 50 条
  • [11] Cross-Domain Contrastive Learning for Hyperspectral Image Classification
    Guan, Peiyan
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [12] Progressive Semantic Enhancement Network for Hyperspectral and LiDAR Classification
    Fu, Xiyou
    Zhou, Xi
    Fu, Yawen
    Liu, Pan
    Jia, Sen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [13] Multiview Feature Learning and Multilevel Information Fusion for Joint Classification of Hyperspectral and LiDAR Data
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [14] Domain-Collaborative Contrastive Learning for Hyperspectral Image Classification
    Luo, Haiyang
    Qiao, Xueyi
    Xu, Yongming
    Zhong, Shengwei
    Gong, Chen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [15] Joint Classification of Hyperspectral and LiDAR Data Based on Mamba
    Liao, Diling
    Wang, Qingsong
    Lai, Tao
    Huang, Haifeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [16] MSLAENet: Multiscale Learning and Attention Enhancement Network for Fusion Classification of Hyperspectral and LiDAR Data
    Fan, Yingying
    Qian, Yurong
    Qin, Yugang
    Wan, Yaling
    Gong, Weijun
    Chu, Zhuang
    Liu, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 10041 - 10054
  • [17] Classification of Hyperspectral and LiDAR Data Using Coupled CNNs
    Hang, Renlong
    Li, Zhu
    Ghamisi, Pedram
    Hong, Danfeng
    Xia, Guiyu
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4939 - 4950
  • [18] Dual-Branch Dynamic Modulation Network for Hyperspectral and LiDAR Data Classification
    Xu, Zhengyi
    Jiang, Wen
    Geng, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [19] CTF-SSCL: CNN-Transformer for Few-Shot Hyperspectral Image Classification Assisted by Semisupervised Contrastive Learning
    Xi, Bobo
    Zhang, Yun
    Li, Jiaojiao
    Li, Yunsong
    Li, Zan
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [20] Vision Transformer With Contrastive Learning for Hyperspectral Image Classification
    Zhou, Heng
    Zhang, Xin
    Zhang, Chunlei
    Ma, Qiaoyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20