IVRII'S CONJECTURE FOR SOME CASES IN OUTER AND SYMPLECTIC BILLIARDS

被引:0
作者
Sharipova, Anastasiia [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
PERIODIC POINTS; SET;
D O I
10.3934/dcds.2024117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a proof for (2 n + 1 , n) and (2 n, n - 1)-periodic Ivrii's conjecture for planar outer billiards. We also give new simple geometric proofs for the 3 and 4-periodic cases for outer and symplectic billiards, and generalize for higher dimensions in case of symplectic billiards.
引用
收藏
页码:896 / 907
页数:12
相关论文
共 17 条
  • [1] Introducing symplectic billiards
    Albers, Peter
    Tabachnikov, Serge
    [J]. ADVANCES IN MATHEMATICS, 2018, 333 : 822 - 867
  • [2] Three-Period Orbits in Billiards on the Surfaces of Constant Curvature
    Blumen, Victoria
    Kim, Ki Yeun
    Nance, Joe
    Zharnitsky, Vadim
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (21) : 5014 - 5024
  • [3] On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards
    Genin, Daniel
    Tabachnikov, Serge
    [J]. JOURNAL OF MODERN DYNAMICS, 2007, 1 (02) : 155 - 173
  • [4] On 4-Reflective Complex Analytic Planar Billiards
    Glutsyuk, Alexey
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 183 - 238
  • [5] NO PLANAR BILLIARD POSSESSES AN OPEN SET OF QUADRILATERAL TRAJECTORIES
    Glutsyuk, Alexey
    Kudryashov, Yury
    [J]. JOURNAL OF MODERN DYNAMICS, 2012, 6 (03) : 287 - 326
  • [6] CAUSTICS FOR INNER AND OUTER BILLIARDS
    GUTKIN, E
    KATOK, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (01) : 101 - 133
  • [7] Ivrii V ., 1980, Funktsional. Anal. i Prilozhen., V14, P25
  • [8] Moser J., 1973, ANN MATH STUD, V77
  • [9] Neumann B., 1958, IOTA MANCHESTER U MA, V1, P14
  • [10] RYCHLIK MR, 1989, J DIFFER GEOM, V30, P191