MAXIMUM PRINCIPLES FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS AND SYMMETRY OF SOLUTIONS

被引:0
|
作者
Luo, Huxiao [1 ,2 ]
Xu, Meiqing [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, CMA Shanghai, Shanghai, Peoples R China
关键词
Nonlinear integro-differential equations; Method of moving planes; Narrow region principle; Radial symmetry; FRACTIONAL LAPLACIAN; ASYMPTOTIC SYMMETRY; MOVING PLANES; REGULARITY; CLASSIFICATION; OPERATORS;
D O I
10.3934/cpaa.2024088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the semilinear integro-differential equations LKu(x)equivalent to CnP.V.integral(Rn)(u(x)-u(y))K(x-y)dy=f(x,u), and the full nonlinear integro-differential equations F(G,K)u(x)equivalent to CnP.V.integral(Rn)G(u(x)-u(y))K(x-y)dy=f(x,u),, where K(<middle dot>) isa symmetric jumping kernel and K(<middle dot>) > C| <middle dot>|(-n-alpha), G(<middle dot>) is some nonlinear function without non-degenerate condition. We adopt the direct method of moving planes to study the symmetry and monotonicity of solutions for integro-differential equations, and investigate the limit of some non-lo cal operators GK as alpha -+ 2. Our results extend some results obtained in [12] and [14].
引用
收藏
页码:264 / 288
页数:25
相关论文
共 50 条
  • [1] Viscosity solutions of nonlinear integro-differential equations
    Alvarez, O
    Tourin, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03): : 293 - 317
  • [2] Viscosity solutions of nonlinear integro-differential equations
    Alvarez, O.
    Tourin, A.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1996, 13 (03): : 293 - 317
  • [3] ESTIMATION OF SOLUTIONS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    RUCHINSKII, VS
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1975, (06): : 91 - 98
  • [4] ABP maximum principles for fully nonlinear integro-differential equations with unbounded inhomogeneous terms
    Kitano, Shuhei
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (04):
  • [5] Entropy solutions to doubly nonlinear integro-differential equations
    Sapountzoglou, Niklas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [6] HYPERPOLYNOMIAL APPROXIMATION OF SOLUTIONS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    KARTSATOS, AG
    SAFF, EB
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 49 (01) : 117 - 125
  • [7] Existence of solutions for nonlinear fractional integro-differential equations
    Ahmed Bragdi
    Assia Frioui
    Assia Guezane Lakoud
    Advances in Difference Equations, 2020
  • [8] Existence of solutions for nonlinear fractional integro-differential equations
    Bragdi, Ahmed
    Frioui, Assia
    Lakoud, Assia Guezane
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [9] EXTENDED SOLUTIONS OF A SYSTEM OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    Le, U. V.
    Nguyen, L. T. T.
    Pascali, E.
    Sanatpour, A. H.
    MATEMATICHE, 2009, 64 (02): : 3 - 16
  • [10] PERIODIC-SOLUTIONS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    NURZHANOV, OD
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1977, (07): : 595 - 598