Distributed Physics-Informed machine learning strategies for two-phase flows

被引:2
|
作者
Radhakrishnan, Gokul [1 ]
Pattamatta, Arvind [1 ]
Srinivasan, Balaji [1 ,2 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Chennai, India
[2] Wadhwani Sch Data Sci & AI, Chennai, India
关键词
Two-phase flows; Deep Neural Networks; Physics Informed Neural Networks; Distributed Learning Machines; INVERSE PROBLEMS; NEURAL-NETWORKS; LEVEL SET; COMPUTATIONS; VOLUME;
D O I
10.1016/j.ijmultiphaseflow.2024.104861
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study delves into applying Distributed Learning Machines (DLM), a subset of Physics-Informed Neural Networks (PINN), in tackling benchmark challenges within two-phase flows. Specifically, two variants of DLM, namely Distributed Physics-Informed Neural Networks (DPINN) and Transfer Physics-Informed Neural Networks (TPINN), are studied. The DLM architecture strategically divides the global domain into distinct non- overlapping sub-domains, with interconnected solutions facilitated by interface conditions embedded in the loss function. Forward and inverse benchmark problems in two-phase flows are explored: (a) bubble in a reversing vortex and (b) Bubble Rising under Buoyancy. The Volume of Fluid (VOF) method handles interface transport in both scenarios, with the inverse problem incorporating interface-position data during the training phase. The forward problem highlights the effectiveness of DPINN in capturing the interface using a simple transport equation. The distinctive contribution of this work lies in its exploration of the inverse problem, offering insights into the scalability of distributed architectures when dealing with a system of governing equations. Following the validation of an initial PINN model against Computational Fluid Dynamics (CFD) data, the study extends to DPINN and TPINN. A parametric study optimizes network hyperparameters, emphasizing the regularization of loss terms within the DPINN loss function. A self-adaptive weighting strategy based on a Gaussian probabilistic model dynamically adjusts loss weights during training to overcome challenges associated with manual parameter tuning. The evaluation of accuracy against CFD data and published results underscore the efficacy of DLMs in addressing two-phase flow problems. Additionally, the computational efficiency of distributed networks is explored compared to traditional PINNs.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [22] A review of physics-informed machine learning for building energy modeling
    Ma, Zhihao
    Jiang, Gang
    Hu, Yuqing
    Chen, Jianli
    APPLIED ENERGY, 2025, 381
  • [23] Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
    Nghiem, Truong X.
    Drgona, Jan
    Jones, Colin
    Nagy, Zoltan
    Schwan, Roland
    Dey, Biswadip
    Chakrabarty, Ankush
    Di Cairano, Stefano
    Paulson, Joel A.
    Carron, Andrea
    Zeilinger, Melanie N.
    Cortez, Wenceslao Shaw
    Vrabie, Draguna L.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3735 - 3750
  • [24] Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC
    Buenning, Felix
    Huber, Benjamin
    Schalbetter, Adrian
    Aboudonia, Ahmed
    Heer, Philipp
    Smith, Roy S.
    Lygeros, John
    Hudoba de Badyn, Mathias
    APPLIED ENERGY, 2022, 310
  • [25] Residual-based adaptivity for two-phase flow simulation in porous media using Physics-informed Neural Networks
    Hanna, John M.
    V. Aguado, Jose
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 396
  • [26] Constraint free physics-informed machine learning for micromagnetic energy minimization
    Schaffer, Sebastian
    Exl, Lukas
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 300
  • [27] Parameter Estimation of Power Electronic Converters With Physics-Informed Machine Learning
    Zhao, Shuai
    Peng, Yingzhou
    Zhang, Yi
    Wang, Huai
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) : 11567 - 11578
  • [28] Inverting the Kohn-Sham equations with physics-informed machine learning
    Martinetto, Vincent
    Shah, Karan
    Cangi, Attila
    Pribram-Jones, Aurora
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [29] Physics-Informed Machine Learning and Uncertainty Quantification for Mechanics of Heterogeneous Materials
    Bharadwaja, B. V. S. S.
    Nabian, Mohammad Amin
    Sharma, Bharatkumar
    Choudhry, Sanjay
    Alankar, Alankar
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2022, 11 (04) : 607 - 627
  • [30] Physics-Informed Machine Learning for Surrogate Modeling of Heat Transfer Phenomena
    Suzuki, Tomoyuki
    Hirohata, Kenji
    Ito, Yasutaka
    Hato, Takehiro
    Kano, Akira
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (11):