Time-Varying Assets Clustering via Identity-Link Latent-Space Infinite Mixture: An Application on DAX Components

被引:0
作者
Peruzzi, Antonio [1 ]
Casarin, Roberto [1 ]
机构
[1] Ca Foscari Univ Venice, Venice, Italy
来源
MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022 | 2022年
关键词
Latent space models; Bayesian inference; Non-parametric methods; MODEL;
D O I
10.1007/978-3-030-99638-3_60
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Finance literature suggests that cross-correlations among assets increase during periods of financial distress, and that cross-correlation's very own clustering structure varies over time. This work proposes an Identity-Link Latent-Space Infinite-Mixture model to analyze the clustering structure of cross-correlation over time. The model allows for the representation of stocks on a d-dimensional Euclidean space and the clustering of assets into groups. Model estimation is carried out within a Bayesian framework, which allows including prior extra-sample information in the inference and accounting for parameter uncertainty. We apply the model to time-varying correlations among the DAX components. We find evidence of clustering effects and positive dependence between the number of clusters and both annualized volatility and average cross-correlation.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 14 条
[1]  
Ahelegbey D.F., 2020, A Bayesian covariance graph and latent position model for multivariate financial time series
[2]   Persistent collective trend in stock markets [J].
Balogh, Emeric ;
Simonsen, Ingve ;
Nagy, Balint Zs. ;
Neda, Zoltan .
PHYSICAL REVIEW E, 2010, 82 (06)
[3]  
DAngelo S., 2018, PhD Thesis, P61
[4]   Interlocking directorates in Irish companies using a latent space model for bipartite networks [J].
Friel, Nial ;
Rastelli, Riccardo ;
Wyse, Jason ;
Raftery, Adrian E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (24) :6629-6634
[5]   Model-based clustering for social networks [J].
Handcock, Mark S. ;
Raftery, Adrian E. ;
Tantrum, Jeremy M. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 :301-322
[6]   Latent space approaches to social network analysis [J].
Hoff, PD ;
Raftery, AE ;
Handcock, MS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) :1090-1098
[7]   Slice sampling mixture models [J].
Kalli, Maria ;
Griffin, Jim E. ;
Walker, Stephen G. .
STATISTICS AND COMPUTING, 2011, 21 (01) :93-105
[8]   Dynamics of cluster structures in a financial market network [J].
Kocheturov, Anton ;
Batsyn, Mikhail ;
Pardalos, Panos M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 413 :523-533
[9]   Identifying States of a Financial Market [J].
Muennix, Michael C. ;
Shimada, Takashi ;
Schaefer, Rudi ;
Leyvraz, Francois ;
Seligman, Thomas H. ;
Guhr, Thomas ;
Stanley, H. Eugene .
SCIENTIFIC REPORTS, 2012, 2
[10]   Dynamics of cluster structure in financial correlation matrix [J].
Nie, Chun-Xiao .
CHAOS SOLITONS & FRACTALS, 2017, 104 :835-840