Water-glycan interactions drive the SARS-CoV-2 spike dynamics: insights into glycan-gate control and camouflage mechanisms

被引:9
作者
Blazhynska, Marharyta [1 ]
Lagardere, Louis [1 ]
Liu, Chengwen [2 ,3 ]
Adjoua, Olivier [1 ]
Ren, Pengyu [2 ]
Piquemal, Jean-Philip [1 ]
机构
[1] Sorbonne Univ, Lab Chim Theor, UMR CNRS 7616, F-75005 Paris, France
[2] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[3] Qubit Pharmaceut, F-75014 Paris, France
基金
欧洲研究理事会;
关键词
PROTEIN HYDRATION; FORCE-FIELD; CORONAVIRUS;
D O I
10.1039/d4sc04364b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To develop therapeutic strategies against COVID-19, we introduce a high-resolution all-atom polarizable model capturing many-body effects of protein, glycan, solvent, and membrane components in SARS-CoV-2 spike protein open and closed states. Employing mu s-long molecular dynamics simulations powered by high-performance cloud-computing and unsupervised density-driven adaptive sampling, we investigated the differences in bulk-solvent-glycan and protein-solvent-glycan interfaces between these states. We unraveled a sophisticated solvent-glycan polarization interaction network involving the N165/N343 glycan-gate patterns that provide structural support for the open state and identified key water molecules that could potentially be targeted to destabilize this configuration. In the closed state, the reduced solvent polarization diminishes the overall N165/N343 dipoles, yet internal interactions and a reorganized sugar coat stabilize this state. Despite variations, our glycan-solvent accessibility analysis reveals the glycan shield capability to conserve constant interactions with the solvent, effectively camouflaging the virus from immune detection in both states. The presented insights advance our comprehension of viral pathogenesis at an atomic level, offering potential to combat COVID-19. We zoomed in on the SARS-CoV-2 interaction layers in open and closed states, revealing a protein-solvent-glycan polarization network supporting the open state. Besides, we showed that the glycan shield maintains viral camouflage in both states.
引用
收藏
页码:14177 / 14187
页数:12
相关论文
共 72 条
[1]  
Adjoua O., TINKER HP HIGH PERFO
[2]   Tinker-HP: Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU Systems [J].
Adjoua, Olivier ;
Lagardere, Louis ;
Jolly, Luc-Henri ;
Durocher, Arnaud ;
Very, Thibaut ;
Dupays, Isabelle ;
Wang, Zhi ;
Inizan, Theo Jaffrelot ;
Celerse, Frederic ;
Ren, Pengyu ;
Ponder, Jay W. ;
Piquemal, Jean-Philip .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (04) :2034-2053
[3]  
Albertini G, 2024, J CROHNS COLITIS, V18, pI432
[4]  
Amaro R. E., AMARO LAB COVID 19
[5]   Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives [J].
Barre, Annick ;
Van Damme, Els J. M. ;
Simplicien, Mathias ;
Le Poder, Sophie ;
Klonjkowski, Bernard ;
Benoist, Herve ;
Peyrade, David ;
Rouge, Pierre .
CELLS, 2021, 10 (07)
[6]   The SARS-CoV-2 spike protein: balancing stability and infectivity [J].
Berger, Imre ;
Schaffitzel, Christiane .
CELL RESEARCH, 2020, 30 (12) :1059-1060
[7]  
Cai YF, 2020, SCIENCE, V369, P1586, DOI [10.1126/science.abd4251, 10.1101/2020.05.16.099317]
[8]   Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein [J].
Calvaresi, Valeria ;
Wrobel, Antoni G. ;
Toporowska, Joanna ;
Hammerschmid, Dietmar ;
Doores, Katie J. ;
Bradshaw, Richard T. ;
Parsons, Ricardo B. ;
Benton, Donald J. ;
Roustan, Chloe ;
Reading, Eamonn ;
Malim, Michael H. ;
Gamblin, Steve J. ;
Politis, Argyris .
NATURE COMMUNICATIONS, 2023, 14 (01)
[9]   Site-specific glycosylation of SARS-CoV-2: Big challenges in mass spectrometry analysis [J].
Campos, Diana ;
Girgis, Michael ;
Sanda, Miloslav .
PROTEOMICS, 2022, 22 (15-16)
[10]  
Casalino Lorenzo, 2020, bioRxiv, DOI 10.1101/2020.06.11.146522