Second-order Karush/Kuhn-Tucker conditions and duality for constrained multiobjective optimization problems

被引:3
作者
Liu, Luyu [1 ]
Chen, Jiawei [1 ]
Kobis, Elisabeth [2 ]
Lv, Yibing [3 ]
Ou, Xiaoqing [4 ,5 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
[2] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, Trondheim, Norway
[3] Yangtze Univ, Sch Informat & Math, Jingzhou, Peoples R China
[4] Chongqing Coll Humanities Sci & Technol, Coll Management, Chongqing, Peoples R China
[5] NorthMinzu Univ, Sch Math & Informat Sci, Yinchuan, Peoples R China
关键词
Constrained multiobjective optimization; second-order KKT condition; duality; strong KKT necessary condition; second-order Wolfe-type dual problem; DIFFERENTIABLE VECTOR OPTIMIZATION; OPTIMALITY CONDITIONS; EFFICIENCY;
D O I
10.1080/02331934.2024.2396053
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate the second-order strong Karush/Kuhn-Tucker conditions and duality of a constrained multiobjective optimization problem (CMOP). Exploiting a second-order regularization condition, we obtain second-order strong KKT necessary conditions of Borwein-properly efficient solution of CMOP without convexity assumptions. Further, second-order sufficient conditions for the second-order KKT point to be an efficient solution of CMOP are derived under the generalized second-order convexity assumptions. Finally, we establish duality results between CMOP and its second-order Wolfe-type dual problem.
引用
收藏
页数:23
相关论文
共 31 条
[1]   Characterizations of robust optimality conditions via image space analysis [J].
Ansari, Q. H. ;
Sharma, P. K. ;
Qin, X. .
OPTIMIZATION, 2020, 69 (09) :2063-2083
[2]  
Ansari Q.H., 2018, Vector Variational Inequalites and 269 Vector Optimization: Theory and Applications
[3]   CONVERGENCE OF A NEW NONMONOTONE MEMORY GRADIENT METHOD FOR UNCONSTRAINED MULTIOBJECTIVE OPTIMIZATION VIA ROBUST APPROACH [J].
Bai, Yushan ;
Chen, Jiawei ;
Tang, Liping ;
Zhang, Tao .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (04) :625-639
[4]   Proper Efficiency and Proper Karush–Kuhn–Tucker Conditions for Smooth Multiobjective Optimization Problems [J].
Burachik R.S. ;
Rizvi M.M. .
Vietnam Journal of Mathematics, 2014, 42 (4) :521-531
[5]   On Weak and Strong Kuhn-Tucker Conditions for Smooth Multiobjective Optimization [J].
Burachik, Regina S. ;
Rizvi, M. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (02) :477-491
[6]   Multiobjective optimization with least constraint violation: optimality conditions and exact penalization [J].
Chen, Jiawei ;
Dai, Yu-Hong .
JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) :807-830
[7]  
Clarke F., 1983, Optimization and Nonsmooth Analysis
[8]   First-order necessary conditions in locally Lipschitz multiobjective optimization [J].
Constantin, Elena .
OPTIMIZATION, 2018, 67 (09) :1447-1460
[9]   Second-order necessary efficiency conditions for nonsmooth vector equilibrium problems [J].
Do Van Luu .
JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (02) :437-453
[10]  
Ehrgott M., 2005, Multicriteria Optimization, V2nd, DOI [10.1007/3-540-27659-9, DOI 10.1007/3-540-27659-9]