New type of solutions for the modified Korteweg-de Vries equation

被引:0
|
作者
Liu, Xing-yu [1 ,2 ]
Lu, Bin-he [3 ]
Zhang, Da-jun [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Qianweichang Coll, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Modified Korteweg-de Vries equation; Trigonometric function; Soliton solution; Bilinear form; BACKLUND-TRANSFORMATIONS;
D O I
10.1016/j.aml.2024.109288
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter we report a new type of multi-soliton solutions for the modified Korteweg-de Vries (mKdV) equation. These solutions contain a functions of the trigonometric solitons and classical solitons simultaneously. A new bilinear form of the mKdV equation is introduced to derive these solutions. The obtained solutions display as solitons living on a periodic background, which are analyzed and illustrated.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] BACKLUND TRANSFORMATION FOR SOLUTIONS OF KORTEWEG-DE VRIES EQUATION
    WAHLQUIST, HD
    ESTABROOK, FB
    PHYSICAL REVIEW LETTERS, 1973, 31 (23) : 1386 - 1390
  • [42] A new combined soliton solution of the modified Korteweg-de Vries equation
    Wu, Jianping
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [43] On a class of singular solutions to the Korteweg-de Vries equation
    S. I. Pohozaev
    Doklady Mathematics, 2010, 82 : 936 - 938
  • [44] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [45] A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation
    Turgut Ak
    S. Battal Gazi Karakoc
    Anjan Biswas
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 1109 - 1121
  • [46] ELLIPTIC SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION AND THE MODIFIED KORTEWEG-DE VRIES EQUATION
    SMIRNOV, AO
    RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 82 (02) : 461 - 470
  • [47] A new approach for the numerical approximation of modified Korteweg-de Vries equation
    Ahmad, Fayyaz
    Rehman, Shafiq Ur
    Zara, Aiman
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 189 - 206
  • [48] A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation
    Ak, Turgut
    Karakoc, S. Battal Gazi
    Biswas, Anjan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A4): : 1109 - 1121
  • [49] Classical Solutions for the Generalized Korteweg-de Vries Equation
    Georgiev, Svetlin
    Boukarou, Aissa
    Hajjej, Zayd
    Zennir, Khaled
    AXIOMS, 2023, 12 (08)
  • [50] The secular solutions of the linearized Korteweg-de Vries equation
    Leblond, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (07) : 3772 - 3782