Periodic Groups Saturated with Finite Simple Unitary Groups of Degree 4 over Finite Fields of Odd Characteristic

被引:0
作者
Ma, X. J. [1 ]
Mao, Y. M. [1 ]
Lytkina, D. V. [2 ,3 ]
Mazurov, V. D. [2 ,4 ]
机构
[1] Shanxi Datong Univ, Sch Math & Stat, Datong, Peoples R China
[2] Siberian State Univ Telecommun & Informat Sci, Novosibirsk, Russia
[3] Novosibirsk State Univ, Novosibirsk, Russia
[4] Sobolev Inst Math, Novosibirsk, Russia
基金
中国国家自然科学基金;
关键词
periodic group; locally finite group; involution; centralizer; saturation; unitary group; 512.542;
D O I
10.1134/S003744662405015X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ M $\end{document} is some nonempty set of finite groups. A group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G $\end{document} is saturated with groups from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ M $\end{document} if each finite subgroup of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G $\end{document} lies in a subgroup isomorphic to an element of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ M $\end{document}. We prove that a periodic group with locally finite centralizers of involutions which is saturated with simple unitary groups of degree 4 over finite fields of fixed odd characteristic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p $\end{document} is isomorphic to a simple unitary group of degree 4 over some locally finite field of characteristic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p $\end{document}.
引用
收藏
页码:1165 / 1169
页数:5
相关论文
共 7 条
[1]  
BOROVIK AV, 1983, SIBERIAN MATH J+, V24, P843
[2]  
Bray JN, 2013, LOND MATH S, V407, P1, DOI 10.1017/CBO9781139192576
[3]  
Conway JH, 1985, ATLAS FINITE GROUPS
[4]   Periodic Groups Saturated with Finite Simple Groups L4(q) [J].
Guo, W. ;
Lytkina, D., V ;
Mazurov, V. D. .
ALGEBRA AND LOGIC, 2022, 60 (06) :360-365
[5]   Groups saturated by a finite set of groups [J].
Shlëpkin, AK ;
Rubashkin, AG .
SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (06) :1140-1142
[6]  
Suzuki M., 1986, Group Theory.II, DOI [10.1007/978-3-642-86885-6, DOI 10.1007/978-3-642-86885-6]
[7]  
The GAP Group, 2019, GAPGroups, Algorithms, and Programming