Notes on several integral inequalities of Hermite-Hadamard type for s-geometrically convex functions

被引:1
|
作者
He, Chun-Ying [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Hulunbuir Univ, Sch Math & Stat, Hulunbuir 021008, Inner Mongolia, Peoples R China
[2] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[3] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
CONTRIBUTIONS TO MATHEMATICS | 2022年 / 5卷
基金
中国国家自然科学基金;
关键词
Hermite-Hadamard type inequalities; integral inequality; s-geometrically convex function; Ho<spacing diaeresis>lder's integral inequality;
D O I
10.47443/cm.2022.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, several erroneous results appeared in the papers [T.-Y. Zhang, A.-P. Ji, F. Qi, Abstr. Appl. Anal. 2012 (2012) #560586] and [T.-Y. Zhang, M. Tunc,, , , A.-P. Ji, B.-Y. Xi, Abstr. Appl. Anal. 2014 (2014) #294739] are corrected.dagger dagger
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [31] Hermite-Hadamard and Hermite-Hadamard-Fejer Type Inequalities Involving Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Alan, Emrullah Aykan
    FILOMAT, 2019, 33 (08) : 2367 - 2380
  • [32] HERMITE-HADAMARD TYPE INEQUALITIES FOR P-CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Toplu, Tekin
    Set, Erhan
    Iscan, Imdat
    Maden, Selahattin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (01): : 149 - 164
  • [33] On some Hermite-Hadamard type inequalities for T-convex interval-valued functions
    Sha, Zehao
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [34] TOPICAL FUNCTIONS: HERMITE-HADAMARD TYPE INEQUALITIES AND KANTOROVICH DUALITY
    Daryaei, M. H.
    Doagooei, A. R.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 779 - 793
  • [35] Fractional Hermite-Hadamard type inequalities for n-times log-convex functions
    Ouanas, Nawel
    Meftah, Badreddine
    Merad, Meriem
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2018, 9 (01): : 211 - 221
  • [36] Hermite–Hadamard-Type Integral Inequalities for Functions Whose First Derivatives are Convex
    F. Qi
    T.-Yu Zhang
    B.-Ya. Xi
    Ukrainian Mathematical Journal, 2015, 67 : 625 - 640
  • [37] Hermite-Hadamard Fractional Inequalities for Differentiable Functions
    Samraiz, Muhammad
    Perveen, Zahida
    Rahman, Gauhar
    Khan, Muhammad Adil
    Nisar, Kottakkaran Sooppy
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [38] Some Quantum Estimates of Hermite-Hadamard Inequalities for Quasi-Convex Functions
    Zhuang, Hefeng
    Liu, Wenjun
    Park, Jaekeun
    MATHEMATICS, 2019, 7 (02)
  • [39] New integral inequalities of Hermite-Hadamard's and Simpson's type for twice differentiable mappings
    Elahi, Zaffer
    Muddassar, Muhammad
    MATHEMATICAL SCIENCES, 2019, 13 (03) : 279 - 285
  • [40] SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR n-TIMES log-CONVEX FUNCTIONS
    Meftah, B.
    Marrouche, C.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (04): : 651 - 669