Notes on several integral inequalities of Hermite-Hadamard type for s-geometrically convex functions

被引:1
|
作者
He, Chun-Ying [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Hulunbuir Univ, Sch Math & Stat, Hulunbuir 021008, Inner Mongolia, Peoples R China
[2] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[3] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
CONTRIBUTIONS TO MATHEMATICS | 2022年 / 5卷
基金
中国国家自然科学基金;
关键词
Hermite-Hadamard type inequalities; integral inequality; s-geometrically convex function; Ho<spacing diaeresis>lder's integral inequality;
D O I
10.47443/cm.2022.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, several erroneous results appeared in the papers [T.-Y. Zhang, A.-P. Ji, F. Qi, Abstr. Appl. Anal. 2012 (2012) #560586] and [T.-Y. Zhang, M. Tunc,, , , A.-P. Ji, B.-Y. Xi, Abstr. Appl. Anal. 2014 (2014) #294739] are corrected.dagger dagger
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [21] Some integral inequalities of the Hermite-Hadamard type for log-convex functions on co-ordinates
    Bai, Yu-Mei
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 5900 - 5908
  • [22] HERMITE-HADAMARD, FEJER AND SHERMAN TYPE INEQUALITIES FOR GENERALIZATIONS OF SUPERQUADRATIC AND CONVEX FUNCTIONS
    Abramovich, Shoshana
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02): : 559 - 575
  • [23] Fractional Hermite-Hadamard inequalities for (α,m)-logarithmically convex functions
    Jianhua Deng
    JinRong Wang
    Journal of Inequalities and Applications, 2013
  • [24] Fractional Hermite-Hadamard inequalities for (α, m)-logarithmically convex functions
    Deng, Jianhua
    Wang, JinRong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [25] COMMENTS ON: ON SOME HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR HARMONICALLY (P, (S, M))-CONVEX FUNCTION
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Iftikhar, Sabah
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (03) : 17 - 18
  • [26] New Hermite-Hadamard type inequalities for product of different convex functions involving certain fractional integral operators
    Set, Erhan
    Choi, Junesang
    Celik, Baris
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2018, 18 (01): : 29 - 36
  • [27] SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE QUASI-CONVEX
    Meftah, B.
    Merad, M.
    Souahi, A.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (02): : 219 - 231
  • [28] Some new Hermite-Hadamard type inequalities for functions whose nth derivatives are convex
    Meftah, B.
    Merad, M.
    Ouanas, N.
    Souahi, A.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (02): : 163 - 178
  • [29] HERMITE-HADAMARD TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED s-PREINVEX FUNCTIONS AND THEIR GENERALIZATION
    Sun, Wenbing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
  • [30] Some new Hermite-Hadamard type inequalities for h-convex functions via quantum integral on finite intervals
    Yang, Limin
    Yang, Ruiyun
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2018, 18 (01): : 74 - 86