Notes on several integral inequalities of Hermite-Hadamard type for s-geometrically convex functions

被引:1
|
作者
He, Chun-Ying [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Hulunbuir Univ, Sch Math & Stat, Hulunbuir 021008, Inner Mongolia, Peoples R China
[2] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[3] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
CONTRIBUTIONS TO MATHEMATICS | 2022年 / 5卷
基金
中国国家自然科学基金;
关键词
Hermite-Hadamard type inequalities; integral inequality; s-geometrically convex function; Ho<spacing diaeresis>lder's integral inequality;
D O I
10.47443/cm.2022.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, several erroneous results appeared in the papers [T.-Y. Zhang, A.-P. Ji, F. Qi, Abstr. Appl. Anal. 2012 (2012) #560586] and [T.-Y. Zhang, M. Tunc,, , , A.-P. Ji, B.-Y. Xi, Abstr. Appl. Anal. 2014 (2014) #294739] are corrected.dagger dagger
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [1] SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-GEOMETRICALLY CONVEX FUNCTIONS
    Yin, Hong-Ping
    Wang, Jing-Yu
    Qi, Feng
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 699 - 705
  • [2] Several integral inequalities of the Hermite-Hadamard type for s-(?, F)-convex functions
    Wang, Yan
    Liu, Xi -Min
    Guo, Bai-Ni
    SCIENCEASIA, 2023, 49 (02): : 200 - 204
  • [3] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s,m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 499 - 510
  • [4] Generalizations of Hermite-Hadamard Type Integral Inequalities for Convex Functions
    Wu, Ying
    Yin, Hong-Ping
    Guo, Bai-Ni
    AXIOMS, 2021, 10 (03)
  • [5] Discussions on two integral inequalities of Hermite-Hadamard type for convex functions
    Wu, Ying
    Qi, Feng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
  • [6] Generalized fractional integral inequalities of Hermite-Hadamard type for (,m)-convex functions
    Qi, Feng
    Mohammed, Pshtiwan Othman
    Yao, Jen-Chih
    Yao, Yong-Hong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [7] Integral inequalities of Hermite-Hadamard type for GA-F-convex functions
    Shuang, Ye
    Qi, Feng
    AIMS MATHEMATICS, 2021, 6 (09): : 9582 - 9589
  • [8] Several Quantum Hermite-Hadamard-Type Integral Inequalities for Convex Functions
    Ciurdariu, Loredana
    Grecu, Eugenia
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [9] Integral inequalities of Hermite-Hadamard type for the product of strongly logarithmically convex and other convex functions
    Wu, Ying
    Qi, Feng
    Niu, Da-Wei
    MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2015, 9 (03) : 394 - 402
  • [10] Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
    Iscan, Imdat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 381 - 390