An efficient network clustering approach using graph-boosting and nonnegative matrix factorization

被引:4
|
作者
Tang, Ji [1 ]
Xu, Xiaoru [2 ]
Wang, Teng [1 ]
Rezaeipanah, Amin [3 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Jiangsu Vocat Coll Finance & Econ, Sch Law & Humanities & Arts, Huaian 223003, Jiangsu, Peoples R China
[3] Univ Rahjuyan Danesh Borazjan, Dept Comp Engn, Bushehr, Iran
关键词
Network clustering; Graph-boosting; Nonnegative matrix factorization;
D O I
10.1007/s10462-024-10912-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network clustering is a critical task in data analysis, aimed at uncovering the underlying structure and patterns within complex networks. Traditional clustering methods often struggle with large-scale and noisy data, leading to suboptimal results. Also, the efficiency of positive samples in network clustering depends on the carefully constructed data augmentation, and the pre-training process of the model deals with large-scale data. To address these issues, in this paper, we introduce an efficient network clustering approach that leverages Graph-Boosting and Nonnegative Matrix Factorization to enhance clustering performance (GBNMF). Our algorithm addresses the limitations of traditional clustering techniques by incorporating the strengths of graph-boosting, which iteratively improves the quality of clusters, and Nonnegative Matrix Factorization (NMF), which effectively captures latent structures within the data. We validate our algorithm through extensive experiments on various benchmark network datasets, demonstrating significant improvements in clustering accuracy and robustness. The proposed algorithm not only achieves superior clustering results but also exhibits remarkable computational efficiency, making it a valuable tool for large-scale network analysis applications.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Weighted symmetric nonnegative matrix factorization and graph-boosting to improve the attributed graph clustering
    Li, Shunlei
    Wan, Lili
    Zhang, Yin
    Luo, Lixia
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 142
  • [2] Attributed Graph Subspace Clustering with Graph-Boosting
    Li, Wang
    Zhu, En
    Wang, Siwei
    Guo, Xifeng
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [3] Joint nonnegative matrix factorization and network embedding for graph co-clustering
    Wang, Yan
    Ma, Xiaoke
    Ma, Xiaoke (xkma@xidian.edu.cn), 1600, Elsevier B.V. (462): : 453 - 465
  • [4] Clustering Heterogeneous Information Network by Joint Graph Embedding and Nonnegative Matrix Factorization
    Zhang, Benhui
    Gong, Maoguo
    Huang, Jianbin
    Ma, Xiaoke
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (04)
  • [5] Deep asymmetric nonnegative matrix factorization for graph clustering
    Hajiveiseh, Akram
    Seyedi, Seyed Amjad
    Tab, Fardin Akhlaghian
    PATTERN RECOGNITION, 2024, 148
  • [6] Robust graph regularized nonnegative matrix factorization for clustering
    Huang, Shudong
    Wang, Hongjun
    Li, Tao
    Li, Tianrui
    Xu, Zenglin
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (02) : 483 - 503
  • [7] Joint nonnegative matrix factorization and network embedding for graph co-clustering
    Wang, Yan
    Ma, Xiaoke
    NEUROCOMPUTING, 2021, 462 : 453 - 465
  • [8] Robust graph regularized nonnegative matrix factorization for clustering
    Shudong Huang
    Hongjun Wang
    Tao Li
    Tianrui Li
    Zenglin Xu
    Data Mining and Knowledge Discovery, 2018, 32 : 483 - 503
  • [9] Robust Graph Regularized Nonnegative Matrix Factorization for Clustering
    Peng, Chong
    Kang, Zhao
    Hu, Yunhong
    Cheng, Jie
    Cheng, Qiang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2017, 11 (03)
  • [10] Efficient Clustering Using Nonnegative Matrix Factorization for Gene Expression Dataset
    Kherwa, Pooja
    Bansal, Poonam
    Singh, Sukhvinder
    Gupta, Tanishaq
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 179 - 190