Benchmarking algorithms for single-cell multi-omics prediction and integration

被引:11
作者
Hu, Yinlei [1 ,2 ,3 ]
Wan, Siyuan [1 ,2 ,4 ]
Luo, Yuanhanyu [5 ,6 ]
Li, Yuanzhe [1 ,2 ,4 ]
Wu, Tong [6 ,7 ]
Deng, Wentao [1 ,2 ]
Jiang, Chen [1 ,2 ]
Jiang, Shan [6 ]
Zhang, Yueping [4 ]
Liu, Nianping [8 ]
Yang, Zongcheng [1 ]
Chen, Falai [3 ,4 ]
Li, Bin [5 ,6 ]
Qu, Kun [1 ,2 ,4 ,8 ]
机构
[1] Univ Sci & Technol China, Sch Basic Med Sci, Affiliated Hosp 1, Div Life Sci & Med,Dept Oncol, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Artificial Intelligence & Data Sci, Hefei, Peoples R China
[5] Tsinghua Univ, Tsinghua Inst Multidisciplinary Biomed Res, Beijing, Peoples R China
[6] Natl Inst Biol Sci, Beijing, Peoples R China
[7] Beijing Normal Univ, Coll Life Sci, Beijing, Peoples R China
[8] Univ Sci & Technol China, Suzhou Inst Adv Res, Sch Biomed Engn, Suzhou, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
RNA; CHROMATIN; PROTEINS; BINDING;
D O I
10.1038/s41592-024-02429-w
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The development of single-cell multi-omics technology has greatly enhanced our understanding of biology, and in parallel, numerous algorithms have been proposed to predict the protein abundance and/or chromatin accessibility of cells from single-cell transcriptomic information and to integrate various types of single-cell multi-omics data. However, few studies have systematically compared and evaluated the performance of these algorithms. Here, we present a benchmark study of 14 protein abundance/chromatin accessibility prediction algorithms and 18 single-cell multi-omics integration algorithms using 47 single-cell multi-omics datasets. Our benchmark study showed overall totalVI and scArches outperformed the other algorithms for predicting protein abundance, and LS_Lab was the top-performing algorithm for the prediction of chromatin accessibility in most cases. Seurat, MOJITOO and scAI emerge as leading algorithms for vertical integration, whereas totalVI and UINMF excel beyond their counterparts in both horizontal and mosaic integration scenarios. Additionally, we provide a pipeline to assist researchers in selecting the optimal multi-omics prediction and integration algorithm. This Analysis study compares computational methods for single-cell multi-omics prediction and integration, generating useful insights for method users and developers working with different analysis purposes and biological problems.
引用
收藏
页码:2182 / +
页数:34
相关论文
共 90 条
[1]   Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization [J].
Antunes, Ana Rita Pombo ;
Scheyltjens, Isabelle ;
Lodi, Francesca ;
Messiaen, Julie ;
Antoranz, Asier ;
Duerinck, Johnny ;
Kancheva, Daliya ;
Martens, Liesbet ;
De Vlaminck, Karen ;
Van Hove, Hannah ;
Hansen, Signe Schmidt Kjolner ;
Bosisio, Francesca Maria ;
Van der Borght, Koen ;
De Vleeschouwer, Steven ;
Sciot, Raf ;
Bouwens, Luc ;
Verfaillie, Michiel ;
Vandamme, Niels ;
Vandenbroucke, Roosmarijn E. ;
De Wever, Olivier ;
Saeys, Yvan ;
Guilliams, Martin ;
Gysemans, Conny ;
Neyns, Bart ;
De Smet, Frederik ;
Lambrechts, Diether ;
Van Ginderachter, Jo A. ;
Movahedi, Kiavash .
NATURE NEUROSCIENCE, 2021, 24 (04) :595-610
[2]   Computational principles and challenges in single-cell data integration [J].
Argelaguet, Ricard ;
Cuomo, Anna S. E. ;
Stegle, Oliver ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2021, 39 (10) :1202-1215
[3]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[4]   MultiVI: deep generative model for the integration of multimodal data [J].
Ashuach, Tal ;
Gabitto, Mariano I. ;
Koodli, Rohan V. ;
Saldi, Giuseppe-Antonio ;
Jordan, Michael I. ;
Yosef, Nir .
NATURE METHODS, 2023, 20 (08) :1222-+
[5]   Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues [J].
Bartosovic, Marek ;
Kabbe, Mukund ;
Castelo-Branco, Goncalo .
NATURE BIOTECHNOLOGY, 2021, 39 (07) :825-835
[6]   The technological landscape and applications of single-cell multi-omics [J].
Baysoy, Alev ;
Bai, Zhiliang ;
Satija, Rahul ;
Fan, Rong .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2023, 24 (10) :695-713
[7]   Single-cell proteomics enabled by next-generation sequencing or mass spectrometry [J].
Bennett, Hayley M. M. ;
Stephenson, William ;
Rose, Christopher M. M. ;
Darmanis, Spyros .
NATURE METHODS, 2023, 20 (03) :363-374
[8]   Metabolomic profiles predict individual multidisease outcomes [J].
Buergel, Thore ;
Steinfeldt, Jakob ;
Ruyoga, Greg ;
Pietzner, Maik ;
Bizzarri, Daniele ;
Vojinovic, Dina ;
zu Belzen, Julius Upmeier ;
Loock, Lukas ;
Kittner, Paul ;
Christmann, Lara ;
Hollmann, Noah ;
Strangalies, Henrik ;
Braunger, Jana M. ;
Wild, Benjamin ;
Chiesa, Scott T. ;
Spranger, Joachim ;
Klostermann, Fabian ;
van den Akker, Erik B. ;
Trompet, Stella ;
Mooijaart, Simon P. ;
Sattar, Naveed ;
Jukema, J. Wouter ;
Lavrijssen, Birgit ;
Kavousi, Maryam ;
Ghanbari, Mohsen ;
Ikram, Mohammad A. ;
Slagboom, Eline ;
Kivimaki, Mika ;
Langenberg, Claudia ;
Deanfield, John ;
Eils, Roland ;
Landmesser, Ulf .
NATURE MEDICINE, 2022, 28 (11) :2309-+
[9]   A test metric for assessing single-cell RNA-seq batch correction [J].
Buettner, Maren ;
Miao, Zhichao ;
Wolf, F. Alexander ;
Teichmann, Sarah A. ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (01) :43-+
[10]   Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays [J].
Chen, Ao ;
Liao, Sha ;
Cheng, Mengnan ;
Ma, Kailong ;
Wu, Liang ;
Lai, Yiwei ;
Qiu, Xiaojie ;
Yang, Jin ;
Xu, Jiangshan ;
Hao, Shijie ;
Wang, Xin ;
Lu, Huifang ;
Chen, Xi ;
Liu, Xing ;
Huang, Xin ;
Li, Zhao ;
Hong, Yan ;
Jiang, Yujia ;
Peng, Jian ;
Liu, Shuai ;
Shen, Mengzhe ;
Liu, Chuanyu ;
Li, Quanshui ;
Yuan, Yue ;
Wei, Xiaoyu ;
Zheng, Huiwen ;
Feng, Weimin ;
Wang, Zhifeng ;
Liu, Yang ;
Wang, Zhaohui ;
Yang, Yunzhi ;
Xiang, Haitao ;
Han, Lei ;
Qin, Baoming ;
Guo, Pengcheng ;
Lai, Guangyao ;
Munoz-Canoves, Pura ;
Maxwell, Patrick H. ;
Thiery, Jean Paul ;
Wu, Qing-Feng ;
Zhao, Fuxiang ;
Chen, Bichao ;
Li, Mei ;
Dai, Xi ;
Wang, Shuai ;
Kuang, Haoyan ;
Hui, Junhou ;
Wang, Liqun ;
Fei, Ji-Feng ;
Wang, Ou .
CELL, 2022, 185 (10) :1777-+