Bayesian estimation of inverse weibull distribution scale parameter under the different loss functions

被引:0
作者
Koksal Babacan, Esin [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Stat, TR-06100 Ankara, Turkiye
来源
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI | 2024年 / 42卷 / 04期
关键词
Bayesian Estimation; Inverse Weibull Distribution; Loss Function; RELIABILITY; POPULATION; PREDICTION; SURVIVAL;
D O I
10.14744/sigma.2024.0009191
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the Bayesian estimators for the Inverse Weibull Distribution (IWD) scale parameter are derived when the shape parameter of distribution is known. The Bayesian estimators for the parameter are obtained by using the Gamma prior under the different types of loss functions such as square error loss function (Self), Entropy loss function (Elf), Precautionary loss function (Plf), Linear exponential loss function (Linexlf) and nonlinear exponential loss function (Nlinexlf). A classical maximum likelihood estimator (mle) for the parameter is also derived. To compare the efficiency of the parameter estimation methods, a simulation study is carried out. The comparison is based on mean square error.
引用
收藏
页码:1108 / 1115
页数:8
相关论文
共 24 条
[1]  
Ahmad K, 2015, Math Theory Model, V5
[2]  
Azimi R., 2012, Int J Appl Math Res, V1, P452, DOI 10.14419/ijamr.v1i4.355
[3]   BAYESIAN-APPROACH TO LIFE TESTING AND RELIABILITY ESTIMATION USING ASYMMETRIC LOSS FUNCTION [J].
BASU, AP ;
EBRAHIMI, N .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 29 (1-2) :21-31
[4]  
BENNETT S, 1983, J R STAT SOC C-APPL, V32, P165
[5]  
Berger J.O., 1985, STAT DECISION THEORY
[6]   Bayesian and Classical Estimation of Stress-Strength Reliability for Inverse Weibull Lifetime Models [J].
Bi, Qixuan ;
Gui, Wenhao .
ALGORITHMS, 2017, 10 (02)
[7]   BAYES 2-SAMPLE PREDICTION FOR THE INVERSE WEIBULL DISTRIBUTION [J].
CALABRIA, R ;
PULCINI, G .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (06) :1811-1824
[8]   Point estimation under asymmetric loss functions for left-truncated exponential samples [J].
Calabria, R ;
Pulcini, G .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (03) :585-600
[9]  
Gencer G., 2016, J SELCUK U NATURAL A, V5, P18
[10]   The Inverse Weibull Distribution as a Failure Model Under Various Loss Functions and Based on Progressive First-Failure Censored Data [J].
Helu, Amal ;
Samawi, Hani .
QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2015, 12 (04) :517-536