Reduced order modeling of hybrid soft-rigid robots using global, local, and state-dependent strain parameterization

被引:6
作者
Mathew, Anup Teejo [1 ,2 ]
Feliu-Talegon, Daniel [1 ]
Alkayas, Abdulaziz Y. [1 ]
Boyer, Frederic [3 ]
Renda, Federico [1 ,2 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Mech & Nucl Engn, Shakhbout Bin Sultan St, Abu Dhabi 127788, U Arab Emirates
[2] Khalifa Univ, Khalifa Univ Ctr Autonomous Robot Syst KUCARS, Abu Dhabi, U Arab Emirates
[3] Inst Mines Telecom Atlantique, Lab LS2N, Nantes, France
关键词
Reduced order modeling; soft robots; mathematical model; strain-based approach; CONTINUUM ROBOTS; FINITE-ELEMENT; DYNAMICS; KINEMATICS; FORMULATION; EQUATIONS; DESIGN; TENDON; BEAMS; RODS;
D O I
10.1177/02783649241262333
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The need for fast and accurate analysis of soft robots calls for reduced order models (ROM). Among these, the relative reduction of strain-based ROMs follows the discretization of the strain to capture the configurations of the robot. Based on the geometrically exact variable strain parametrization of the Cosserat rod, we developed a ROM that necessitates a minimal number of degrees of freedom to represent the state of the robot: the Geometric Variable Strain (GVS) model. This model allows the static and dynamic analysis of open-, branched-, or closed-chain soft-rigid hybrid robots, all under the same mathematical framework. This paper presents for the first time the complete GVS modeling framework for a generic hybrid soft-rigid robot. Based on the Magnus expansion of the variable strain field, we developed an efficient recursive algorithm for computing the Lagrangian dynamics of the system. To discretize the soft link, we introduce state- and time-dependent basis, which is the most general form of strain basis. We classify the independent bases into global and local bases. We propose "FEM-like" local strain bases with nodal values as their generalized coordinates. Finally, using four real-world applications, we illustrate the potential of the model developed. We think that the soft robotics community will use the comprehensive framework presented in this work to analyze a wide range of specific robotic systems.
引用
收藏
页码:129 / 154
页数:26
相关论文
共 65 条
  • [21] Soft Robotic Grippers for Biological Sampling on Deep Reefs
    Galloway, Kevin C.
    Becker, Kaitlyn P.
    Phillips, Brennan
    Kirby, Jordan
    Licht, Stephen
    Tchernov, Dan
    Wood, Robert J.
    Gruber, David F.
    [J]. SOFT ROBOTICS, 2016, 3 (01) : 23 - 33
  • [22] Forward and inverse problems in the mechanics of soft filaments
    Gazzola, M.
    Dudte, L. H.
    McCormick, A. G.
    Mahadevan, L.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (06):
  • [23] Dynamics for variable length multisection continuum arms
    Godage, Isuru S.
    Medrano-Cerda, Gustavo A.
    Branson, David T.
    Guglielmino, Emanuele
    Caldwell, Darwin G.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (06) : 695 - 722
  • [24] Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction
    Goury, Olivier
    Duriez, Christian
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (06) : 1565 - 1576
  • [25] Grinspun E., 2006, DISCRETE DIFFERENTIA, P1
  • [26] Gutfreund Y, 1998, J NEUROSCI, V18, P5976
  • [27] HAIRER E., 2006, Geometric Numerical Integration: Structure- Preserving Algorithms for Ordinary Differential Equations, V2nd, DOI 10.1007/978-3-662-05018-7
  • [28] A total Lagrangian, objective and intrinsically locking-free Petrov-Galerkin SE(3) Cosserat rod finite element formulation
    Harsch, Jonas
    Sailer, Simon
    Eugster, Simon R.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (13) : 2965 - 2994
  • [29] Compliant gripper design, prototyping, and modeling using screw theory formulation
    Hussain, Irfan
    Malvezzi, Monica
    Gan, Dongming
    Iqbal, Zubair
    Seneviratne, Lakmal
    Prattichizzo, Domenico
    Renda, Federico
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2021, 40 (01) : 55 - 71
  • [30] Izard J.B., 2017, Construction Robotics, V1, P69, DOI [DOI 10.1007/S41693-017-0008-0, 10.1007/s41693-017-0008-0]