Regularity for multi-phase problems at nearly linear growth

被引:3
作者
De Filippis, Filomena [1 ]
Piccinini, Mirco [1 ]
机构
[1] Univ Parma, Dipartimento Sci Matematiche Fis & Informat, Parco Area Sci 53-A Campus, I-43124 Parma, Italy
关键词
Regularity; Nonuniform ellipticity; Nearly linear growth; VARIATIONAL INTEGRALS; MINIMIZERS; FUNCTIONALS; GRADIENT; MINIMA;
D O I
10.1016/j.jde.2024.08.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Minima of the log-multiphase variational integral w bar right arrow integral(Omega) [vertical bar Dw| log(1 + vertical bar Dw vertical bar) + a(x)vertical bar Dw vertical bar(q) + b(x)vertical bar Dw vertical bar(s)] dx, have locally Holder continuous gradient under sharp quantitative bounds linking the growth powers (q, s) to the Holder exponents of the modulating coefficients a(center dot) and b(center dot) respectively. (c) 2024 The Authors. Published by Elsevier Inc.
引用
收藏
页码:832 / 868
页数:37
相关论文
共 74 条
  • [1] Relaxation of convex functional:: The gap problem
    Acerbi, E
    Bouchitté, G
    Fonseca, I
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03): : 359 - 390
  • [2] Antonini CA, 2023, Arxiv, DOI arXiv:2307.03052
  • [3] Baasandorj S., 2023, Trans. Am. Math. Soc., V376, P8733
  • [4] Baasandorj S., 2024, Memoirs Amer. Math. Soc
  • [5] Baasandorj S, 2023, ANN SCUOLA NORM-SCI, V24, P2215
  • [6] Gradient estimates for multi-phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Oh, Jehan
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
  • [7] Calderon-Zygmund estimates for generalized double phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Oh, Jehan
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [8] Balci A, 2023, Arxiv, DOI arXiv:2312.15772
  • [9] New Examples on Lavrentiev Gap Using Fractals
    Balci, Anna Kh.
    Diening, Lars
    Surnachev, Mikhail
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
  • [10] Baroni P., 2023, A new condition ensuring gradient continuity for minimizers of non-autonomous functionals with mild phase transition