Artificial intelligence and data-driven computational simulation

被引:0
|
作者
Li, He [1 ]
Xu, Yong [1 ]
Duan, Wenhui [1 ]
Xiao, Ruijuan [2 ]
Weng, Hongming [2 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
关键词
computational physics; artificial intelligence; data-driven;
D O I
10.1360/SSPMA-2024-0030
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
"Big data + artificial intelligence" represents a novel research paradigm that will have a profound impact on future scientific research. In the field of computational physics, artificial intelligence and data-driven approaches are fostering the formation of new methodologies, and consequently giving rise to new significant scientific problems. This article will explore the emerging research area of artificial intelligence and data-driven computational simulations, review related research progress, and provide a perspective on future developments.
引用
收藏
页数:6
相关论文
共 40 条
  • [1] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [2] Perspective: Machine learning potentials for atomistic simulations
    Behler, Joerg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17):
  • [3] Machine learning for molecular and materials science
    Butler, Keith T.
    Davies, Daniel W.
    Cartwright, Hugh
    Isayev, Olexandr
    Walsh, Aron
    [J]. NATURE, 2018, 559 (7715) : 547 - 555
  • [4] Machine learning and the physical sciences
    Carleo, Giuseppe
    Cirac, Ignacio
    Cranmer, Kyle
    Daudet, Laurent
    Schuld, Maria
    Tishby, Naftali
    Vogt-Maranto, Leslie
    Zdeborova, Lenka
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
  • [5] Solving the quantum many-body problem with artificial neural networks
    Carleo, Giuseppe
    Troyer, Matthias
    [J]. SCIENCE, 2017, 355 (6325) : 602 - 605
  • [6] A universal graph deep learning interatomic potential for the periodic table
    Chen, Chi
    Ong, Shyue Ping
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (11): : 718 - +
  • [7] Recent advances and applications of deep learning methods in materials science
    Choudhary, Kamal
    DeCost, Brian
    Chen, Chi
    Jain, Anubhav
    Tavazza, Francesca
    Cohn, Ryan
    Park, Cheol Woo
    Choudhary, Alok
    Agrawal, Ankit
    Billinge, Simon J. L.
    Holm, Elizabeth
    Ong, Shyue Ping
    Wolverton, Chris
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [8] Condensed Matter Physics Data Center Chinese Academy of Sciences, 2024, Characteristic Data Resources
  • [9] Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/nmat3568, 10.1038/NMAT3568]
  • [10] AFLOW: An automatic framework for high-throughput materials discovery
    Curtarolo, Stefano
    Setyawan, Wahyu
    Hart, Gus L. W.
    Jahnatek, Michal
    Chepulskii, Roman V.
    Taylor, Richard H.
    Wanga, Shidong
    Xue, Junkai
    Yang, Kesong
    Levy, Ohad
    Mehl, Michael J.
    Stokes, Harold T.
    Demchenko, Denis O.
    Morgan, Dane
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 218 - 226