Subgraph Counts in Random Clustering Graphs

被引:0
作者
Chung, Fan [1 ]
Sieger, Nicholas [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92037 USA
来源
MODELLING AND MINING NETWORKS, WAW 2024 | 2024年 / 14671卷
关键词
Random graphs; clustering coefficient; scale-free networks; Chung-Lu model;
D O I
10.1007/978-3-031-59205-8_1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze subgraph counts in random clustering graphs for general degree distributions. Building on the prior work, we weaken the assumptions required to derive our previous results and exactly determine the asymptotics of subgraph counts in a random clustering graphs under mild conditions. As an application, we analyze the clustering coefficient and cycle counts in random clustering graphs.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 11 条
  • [1] Aiello W, 2002, MASSIVE COMP, V4, P97
  • [2] A Spatial Web Graph Model with Local Influence Regions
    Aiello, W.
    Bonato, A.
    Cooper, C.
    Janssen, J.
    Pralat, P.
    [J]. INTERNET MATHEMATICS, 2008, 5 (1-2) : 175 - 196
  • [3] Alon N., 2016, PROBABILISTIC METHOD
  • [4] Normal and stable approximation to subgraph counts in superpositions of Bernoulli random graphs
    Bloznelis, Mindaugas
    Karjalainen, Joona
    Leskelae, Lasse
    [J]. JOURNAL OF APPLIED PROBABILITY, 2024, 61 (02) : 401 - 419
  • [5] Clustering and percolation on superpositions of Bernoulli random graphs
    Bloznelis, Mindaugas
    Leskelä, Lasse
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (02) : 283 - 342
  • [6] The Structure of Geographical Threshold Graphs
    Bradonjic, Milan
    Hagberg, Aric
    Percus, Allon G.
    [J]. INTERNET MATHEMATICS, 2008, 5 (1-2) : 113 - 139
  • [7] Geometric inhomogeneous random graphs
    Bringmann, Karl
    Keusch, Ralph
    Lengler, Johannes
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 760 : 35 - 54
  • [8] A Random Graph Model for Clustering Graphs
    Chung, Fan
    Sieger, Nicholas
    [J]. ALGORITHMS AND MODELS FOR THE WEB GRAPH, WAW 2023, 2023, 13894 : 112 - 126
  • [9] Deijfen M., 2015, Random intersection graphs with tunable degree distribution and clustering
  • [10] Hyperbolic geometry of complex networks
    Krioukov, Dmitri
    Papadopoulos, Fragkiskos
    Kitsak, Maksim
    Vahdat, Amin
    Boguna, Marian
    [J]. PHYSICAL REVIEW E, 2010, 82 (03)