Production of Esters in Escherichia coli Using Citrate Synthase Variants

被引:0
作者
Shipmon, Jacoby C. [1 ]
Rathinasabapathi, Pasupathi [1 ,2 ]
Broich II, Michael L. [1 ]
Hemansi, Mark A. [1 ]
Eiteman, Mark A. [1 ]
机构
[1] Univ Georgia, Sch Chem Mat & Biomed Engn, Athens, GA 30602 USA
[2] SRM Inst Sci & Technol, Dept Genet Engn, Kattankulathur 603202, Tamil Nadu, India
基金
美国国家科学基金会;
关键词
acetate esters; citrate synthase; propyl acetate; point mutation; batch fermentation; SACCHAROMYCES-CEREVISIAE; ALCOHOL ACETYLTRANSFERASE; ISOAMYL ACETATE; ACETYL-COA; OVEREXPRESSION; BIOSYNTHESIS; EXPRESSION; MUTANTS; CHAIN; ACIDS;
D O I
10.3390/microorganisms12071338
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Acetate esters comprise a wide range of products including fragrances and industrial solvents. Biosynthesis of esters offers a promising alternative to chemical synthesis because such routes use renewable carbohydrate resources and minimize the generation of waste. One biochemical method for ester formation relies on the ATF1 gene from Saccharomyces cerevisiae, which encodes alcohol-O-acyltransferase (AAT) which converts acetyl-CoA and an exogenously supplied alcohol into the ester. In this study, the formation of several acetate esters via AAT was examined in Escherichia coli chromosomally expressing citrate synthase variants, which create a metabolic bottleneck at acetyl-CoA. In shake flask cultures, variant strains generated more acetate esters than the strains expressing the wild-type citrate synthase. In a controlled bioreactor, E. coli GltA[A267T] generated 3.9 g propyl acetate in 13 h, corresponding to a yield of 0.155 g propyl acetate/g glucose, which is 18% greater than that obtained by the wild-type GltA control. These results demonstrate the ability of citrate synthase variants to redistribute carbon from central metabolism into acetyl-CoA-derived biochemicals.
引用
收藏
页数:13
相关论文
共 40 条
  • [1] TIGHTLY REGULATED TAC PROMOTER VECTORS USEFUL FOR THE EXPRESSION OF UNFUSED AND FUSED PROTEINS IN ESCHERICHIA-COLI
    AMANN, E
    OCHS, B
    ABEL, KJ
    [J]. GENE, 1988, 69 (02) : 301 - 315
  • [2] Multilevel optimisation of anaerobic ethyl acetate production in engineered Escherichia coli
    Bohnenkamp, Anna C.
    Kruis, Aleksander J.
    Mars, Astrid E.
    Wijffels, Rene H.
    van der Oost, John
    Kengen, Serve W. M.
    Weusthuis, Ruud A.
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
  • [3] Esterification of geraniol as a strategy for increasing product titre and specificity in engineered Escherichia coli
    Chacon, Micaela G.
    Marriott, Alice
    Kendrick, Emanuele G.
    Styles, Matthew Q.
    Leak, David J.
    [J]. MICROBIAL CELL FACTORIES, 2019, 18 (1)
  • [4] GENE DISRUPTION IN ESCHERICHIA-COLI - TCR AND KM(R) CASSETTES WITH THE OPTION OF FLP-CATALYZED EXCISION OF THE ANTIBIOTIC-RESISTANCE DETERMINANT
    CHEREPANOV, PP
    WACKERNAGEL, W
    [J]. GENE, 1995, 158 (01) : 9 - 14
  • [5] One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    Datsenko, KA
    Wanner, BL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) : 6640 - 6645
  • [6] Green synthesis from biomass
    Donate P.M.
    [J]. Chemical and Biological Technologies in Agriculture, 1 (1)
  • [7] Optimization of the ion-exchange analysis of organic acids from fermentation
    Eiteman, MA
    Chastain, MJ
    [J]. ANALYTICA CHIMICA ACTA, 1997, 338 (1-2) : 69 - 75
  • [8] eQuilibrator-the biochemical thermodynamics calculator
    Flamholz, Avi
    Noor, Elad
    Bar-Even, Arren
    Milo, Ron
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) : D770 - D775
  • [9] Modulating acetate ester and higher alcohol production in Saccharomyces cerevisiae through the cofactor engineering
    Hong, Kun-Qiang
    Fu, Xiao-Meng
    Dong, Sheng-Sheng
    Xiao, Dong-guang
    Dong, Jian
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2019, 46 (07) : 1003 - 1011
  • [10] Ester production in E-coli and C-acetobutylicum
    Horton, CE
    Bennett, GN
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2006, 38 (07) : 937 - 943