Aiming the water transport issues of anion exchange membrane fuel cells by introducing hydrophobic carbon nanotube diffusion layer

被引:0
|
作者
Zhang, Zijie [1 ,2 ]
Xiao, Cailin [1 ,2 ]
Huang, Haodong [1 ,2 ]
ul Haq, Mahmood [1 ,2 ]
Li, Zheng [1 ,2 ]
Zeng, Lin [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen Key Lab Adv Energy Storage, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Anion exchange membrane fuel cell; Carbon nanotube; Gas diffusion layer; Water management; High performance; MICRO POROUS LAYER; GAS-DIFFUSION; MICROPOROUS LAYER; THERMAL-CONDUCTIVITY; ENHANCED PERFORMANCE; CONTACT RESISTANCE; CATALYST LAYER; PTFE CONTENT; LOW-COST; IN-SITU;
D O I
10.1016/j.jpowsour.2024.235123
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The gas diffusion layer (GDL) enhances the transport efficiency of reaction gases and facilitates the removal of accumulated liquid water, thereby improving water management in anion exchange membrane fuel cells (AEMFCs). Carbon nanotubes (CNTs) are recognized as one of the promising materials to optimize mass transport within GDLs. In this study, we successfully synthesized an abundance of CNTs on the surface of commercial gas diffusion media. The as-prepared CNT layer exhibits exceptionally high hydrophobic properties and forms a hierarchically hydrophobic structure combined with the gas diffusion media, effectively enhancing the mass transfer of the membrane electrode assembly (MEA) and reducing ohmic impedance. Under supersaturation conditions, the power density of the MEA containing CNTs reaches 1031.7 mW/cm2, 2 , significantly higher than the 760.64 mW/cm2 2 observed for the commercial GDL. Further testing demonstrates that the MEA containing CNTs exhibits a limiting current density of 2507.4 mA/cm2, 2 , which is much superior to the benchmark MEA with the commercial GDL (1591 mA/cm2). 2 ). Electrochemical impedance spectroscopy analysis reveals that the mass transfer resistance of MEAs with CNTs is lower than that of MEAs with the commercial GDL. More importantly, the phase-field modeling is performed to simulate the transport of the liquid water in the hierarchical GDL.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effect of tunable hydrophobic level in the gas diffusion substrate and microporous layer on anion exchange membrane fuel cells
    Van Men Truong
    Wang, Chih-Liang
    Yang, Mingkun
    Yang, Hsiharng
    JOURNAL OF POWER SOURCES, 2018, 402 : 301 - 310
  • [2] Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review
    Guo, Hui
    Chen, Lubing
    Ismail, Sara Adeeba
    Jiang, Lulu
    Guo, Shihang
    Gu, Jie
    Zhang, Xiaorong
    Li, Yifeng
    Zhu, Yuwen
    Zhang, Zihan
    Han, Donglin
    MATERIALS, 2022, 15 (24)
  • [3] Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells
    Kim, Jaeyeon
    Kim, Hyeok
    Song, Hyeonjun
    Kim, Dasol
    Kim, Geon Hwi
    Im, Dasom
    Jeong, Youngjin
    Park, Taehyun
    ENERGY, 2021, 227
  • [4] Experimental and computational study of the microporous layer and hydrophobic treatment in the gas diffusion layer of a proton exchange membrane fuel cell
    Sarker, Mrittunjoy
    Rahman, Md Azimur
    Mojica, Felipe
    Mehrazi, Shirin
    Kort-Kamp, Wilton J. M.
    Chuang, Po-Ya Abel
    JOURNAL OF POWER SOURCES, 2021, 509
  • [5] Effects of the carbon black properties in gas diffusion layer on the performance of proton exchange membrane fuel cells
    Wang, Xinyuan
    Liu, Yu-Ting
    Zhang, Xiao-Fang
    Song, Hongyan
    Wu, Gang-Ping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (73) : 28528 - 28538
  • [6] Liquid transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of microporous layer cracks
    Shi, Xin
    Jiao, Daokuan
    Bao, Zhiming
    Jiao, Kui
    Chen, Wenmiao
    Liu, Zhi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 6247 - 6258
  • [7] Laser-perforated gas diffusion layer for promoting liquid water transport in a proton exchange membrane fuel cell
    Wang, Xueke
    Chen, Sitong
    Fan, Zhaohu
    Li, Weiwei
    Wang, Shubo
    Li, Xue
    Zhao, Yang
    Zhu, Tong
    Xie, Xiaofeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (50) : 29995 - 30003
  • [8] Effect of Various Hydrophobic Concentrations and Base Weights of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells
    Lin, J. -H.
    Ko, T. -H.
    Kuo, W. -S.
    Lin, Y. -H.
    Huang, C. -C.
    Chen, W. -C.
    FUEL CELLS, 2010, 10 (01) : 118 - 123
  • [9] Strategies to optimize water management in anion exchange membrane fuel cells
    Zhang, Baowen
    Hua, Yani
    Gao, Zhan
    JOURNAL OF POWER SOURCES, 2022, 525
  • [10] A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation
    Park, Jaeman
    Oh, Hwanyeong
    Ha, Taehun
    Lee, Yoo Il
    Min, Kyoungdoug
    APPLIED ENERGY, 2015, 155 : 866 - 880