Prevention of morphological change for (Ba,Sr)(Co,Fe)O3 cathodes by incorporating (Ce,Gd)O2 for intermediate-temperature solid oxide fuel cells

被引:0
作者
Sumi, Hirofumi [1 ]
Adachi, Keita [2 ]
Daiko, Yusuke [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Innovat Funct Mat Res Inst, Nagoya, Aichi 4638560, Japan
[2] Nagoya Inst Technol, Dept Life Sci & Appl Chem, Nagoya, Aichi 4668555, Japan
关键词
Intermediate-temperature solid oxide fuel cell; (IT-SOFC); Perovskite oxide; Composite cathode; Mixed ionic and electronic conductor (MIEC); ELECTROCHEMICAL IMPEDANCE SPECTRA; HIGH-PERFORMANCE; BA0.5SR0.5CO0.8FE0.2O3-DELTA; DIFFUSION; LSCF; BSCF;
D O I
10.1016/j.ceramint.2024.07.317
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-delta (BSCF) generally exhibits superior cathode activity compared to La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-delta (LSCF) for intermediate-temperature solid oxide fuel cells (IT-SOFCs). However, the chemical stability of BSCF is inferior to that of LSCF. When BSCF cathodes are sintered at a high temperature of 1050 degrees C, performance was compromised due to the formation of (Ba,Sr)ZrO3 3 between the scandia-stabilized zirconia (ScSZ) electrolyte and gadolinia-doped ceria (GDC) interlayer. The oxide ionic conductivity of (Ba,Sr)ZrO3 3 was low, decreasing the cathode performance. Furthermore, the BSCF grains enlarged, and cobalt oxide formed due to BSCF decomposition, decreasing the active specific surface area. However, by incorporating GDC into the BSCF cathode, the morphology remained unchanged and cobalt oxide formation was prevented, despite (Ba,Sr)ZrO3 3 still forming. The performance of the cell with the BSCF-GDC composite cathode surpassed that with the BSCF cathode due to decreased polarization resistance attributed to the oxygen surface exchange and diffusion processes in the cathode.
引用
收藏
页码:40176 / 40180
页数:5
相关论文
共 32 条
[1]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[2]   Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes [J].
Armstrong, E. N. ;
Duncan, K. L. ;
Oh, D. J. ;
Weaver, J. F. ;
Wachsman, E. D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) :B492-B499
[3]   A LINEAR KRONIG-KRAMERS TRANSFORM TEST FOR IMMITTANCE DATA VALIDATION [J].
BOUKAMP, BA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1885-1894
[4]   Optimisation of composite cathodes for intermediate temperature SOFC applications [J].
Dusastre, V ;
Kilner, JA .
SOLID STATE IONICS, 1999, 126 (1-2) :163-174
[5]   Evaluation of electrochemical impedance spectra by the distribution of relaxation times [J].
Ivers-Tiffee, Ellen ;
Weber, Andre .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2017, 125 (04) :193-201
[6]  
Kim Y-M., 2011, J ELECTROCHEM SCI TE, V2, P32, DOI DOI 10.33961/JECST.2011.2.1.032
[7]   Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3-δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs [J].
Lee, Seunghun ;
Lim, Yongho ;
Lee, Eun A. ;
Hwang, Hae Jin ;
Moon, Ji-Woong .
JOURNAL OF POWER SOURCES, 2006, 157 (02) :848-854
[8]   Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells [J].
Leonide, A. ;
Sonn, V. ;
Weber, A. ;
Ivers-Tiffee, E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :B36-B41
[9]   Performances of Ba0.5Sr0.5Co0.6Fe0.4O3-δ-Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC [J].
Li, Shuyan ;
Lue, Zhe ;
Wei, Bo ;
Huang, Xiqiang ;
Miao, Jipeng ;
Liu, Zhiguo ;
Su, Wenhui .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 448 (1-2) :116-121
[10]   Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell [J].
Lin, Ye ;
Ran, Ran ;
Zheng, Yao ;
Shao, Zongping ;
Jin, Wanqin ;
Xu, Nanping ;
Ahn, Jeongmin .
JOURNAL OF POWER SOURCES, 2008, 180 (01) :15-22