Local Uniform Well-posedness for Nonlinear Schrödinger Equation with General Nonlinearity on Product Manifolds

被引:0
作者
Song, Yilin [1 ]
Zhang, Ruixiao [1 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2025年 / 20卷 / 02期
基金
国家重点研发计划;
关键词
Multilinear spectral estimates; nonlinear Schr & ouml; dinger equation; Bourgain space; SCHRODINGER-EQUATION; CAUCHY-PROBLEM; SCATTERING;
D O I
10.1007/s11464-023-0122-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem of the nonlinear Schr & ouml;dinger equation posed on a (d + 1)-dimensional product manifolds M=ZdxS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M={Z<^>{d}} \times {{\mathbb S}<^>1}$$\end{document}, where Zd denotes the d-dimensional compact manifold under the eigenvalue assumption. We prove the uniform local well-posedness of Hs solution with the defocusing subcritical nonlinearity and extend the results of [Amer. J. Math., 2004, 126(3): 569-605], [Ann. Sci. & Eacute;cole Norm. Sup. (4), 2005, 38(2): 255-301] and [Sci. China Math., 2015, 58(5): 1023-1046] to the more general geometry. The main tools in our argument are multilinear estimates and Bony's linearized technique.
引用
收藏
页码:241 / 277
页数:37
相关论文
共 19 条
[1]  
Besse A L., 1978, MANIFOLDS ALL WHOSE, V93, DOI DOI 10.1007/978-3-642-61876-5
[2]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[3]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107, DOI DOI 10.1007/BF01896020
[4]   The proof of the l2 Decoupling Conjecture [J].
Bourgain, Jean ;
Demeter, Ciprian .
ANNALS OF MATHEMATICS, 2015, 182 (01) :351-389
[5]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[6]   Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrodinger equations [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (02) :255-301
[7]   Bilinear eigenfunction estimates and the nonlinear Schrodinger equation on surfaces [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
INVENTIONES MATHEMATICAE, 2005, 159 (01) :187-223
[8]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[9]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[10]  
Dodson B, 2012, J AM MATH SOC, V25, P429