On Blow-Up and Explicit Soliton Solutions for Coupled Variable Coefficient Nonlinear Schrödinger Equations

被引:0
|
作者
Escorcia, Jose M. [1 ]
Suazo, Erwin [2 ]
机构
[1] Univ EAFIT, Escuela Ciencias Aplicadas Ingn, Carrera 49 7 Sur 50, Medellin 050022, Colombia
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA
关键词
coupled nonlinear Schr & ouml; dinger equations; soliton solution; rogue wave solution; blow-up solution; similarity transformations; Riccati systems; SCHRODINGER-EQUATIONS; ROGUE WAVES; SYSTEM; INTEGRABILITY;
D O I
10.3390/math12172694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with the study of explicit solutions for a generalized coupled nonlinear Schr & ouml;dinger equations (NLS) system with variable coefficients. Indeed, by employing similarity transformations, we show the existence of rogue wave and dark-bright soliton-like solutions for such a generalized NLS system, provided the coefficients satisfy a Riccati system. As a result of the multiparameter solution of the Riccati system, the nonlinear dynamics of the solution can be controlled. Finite-time singular solutions in the L infinity norm for the generalized coupled NLS system are presented explicitly. Finally, an n-dimensional transformation between a variable coefficient NLS coupled system and a constant coupled system coefficient is presented. Soliton and rogue wave solutions for this high-dimensional system are presented as well.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Localized wave solutions to coupled variable-coefficient fourth-order nonlinear Schrödinger equations
    Song, N.
    Guo, M. M.
    Liu, R.
    Ma, W. X.
    MODERN PHYSICS LETTERS A, 2024, 39 (09)
  • [32] Soliton solutions of a class of generalized nonlinear schrödinger equations
    Cao Q.
    Zhang T.
    Djidjeli K.
    Price G.W.
    Twizell E.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (4) : 389 - 398
  • [33] Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations
    Hasan Bulut
    Tukur Abdulkadir Sulaiman
    Betul Demirdag
    Nonlinear Dynamics, 2018, 91 : 1985 - 1991
  • [34] Blow-up Theory for the Coupled L2-Critical Nonlinear Schrödinger System in the Plane
    Li Ma
    B.-W. Schulze
    Milan Journal of Mathematics, 2010, 78 : 591 - 601
  • [35] Blow-up solutions of nonlinear differential equations
    Chen, YC
    Tsai, LY
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) : 366 - 387
  • [36] Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent
    Silvia Cingolani
    Angela Pistoia
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 201 - 215
  • [37] Blow-up of the radially symmetric solutions for the quadratic nonlinear Schr?dinger system without mass -resonance
    Inui, Takahisa
    Kishimoto, Nobu
    Nishimura, Kuranosuke
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198 (198)
  • [38] Soliton interactions for coupled nonlinear Schrödinger equations with symbolic computation
    Wen-Jun Liu
    Nan Pan
    Long-Gang Huang
    Ming Lei
    Nonlinear Dynamics, 2014, 78 : 755 - 770
  • [39] Soliton and breather solutions for the seventh-order variable-coefficient nonlinear Schrödinger equation
    Jie Jin
    Yi Zhang
    Optical and Quantum Electronics, 2023, 55
  • [40] On soliton dynamics in nonlinear schrödinger equations
    Zhou Gang
    I. M. Sigal
    Geometric & Functional Analysis GAFA, 2006, 16 : 1377 - 1390