Emotion Detection from EEG Signals Using Machine Deep Learning Models

被引:9
作者
Fernandes, Joao Vitor Marques Rabelo [1 ]
de Alexandria, Auzuir Ripardo [1 ]
Marques, Joao Alexandre Lobo [2 ]
de Assis, Debora Ferreira [3 ]
Motta, Pedro Crosara [4 ]
Silva, Bruno Riccelli dos Santos [3 ]
机构
[1] Inst Fed Ceara IFCE, Programa Posgrad Engn Telecomunicacoes, BR-60040215 Fortaleza, Brazil
[2] Univ St Joseph, Lab Appl Neurosci LAN, Macau 999078, Peoples R China
[3] Univ Fed Ceara, Programa Posgrad Engn Teleinformat, BR-60455760 Fortaleza, Brazil
[4] Univ Fed Rio De Janeiro, Programa Posgrad Engn Biomed, BR-21941598 Rio De Janeiro, Brazil
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 08期
关键词
deep learning; emotion detection; emotion recognition; electroencephalogram; graph convolutional neural networks; machine learning;
D O I
10.3390/bioengineering11080782
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Detecting emotions is a growing field aiming to comprehend and interpret human emotions from various data sources, including text, voice, and physiological signals. Electroencephalogram (EEG) is a unique and promising approach among these sources. EEG is a non-invasive monitoring technique that records the brain's electrical activity through electrodes placed on the scalp's surface. It is used in clinical and research contexts to explore how the human brain responds to emotions and cognitive stimuli. Recently, its use has gained interest in real-time emotion detection, offering a direct approach independent of facial expressions or voice. This is particularly useful in resource-limited scenarios, such as brain-computer interfaces supporting mental health. The objective of this work is to evaluate the classification of emotions (positive, negative, and neutral) in EEG signals using machine learning and deep learning, focusing on Graph Convolutional Neural Networks (GCNN), based on the analysis of critical attributes of the EEG signal (Differential Entropy (DE), Power Spectral Density (PSD), Differential Asymmetry (DASM), Rational Asymmetry (RASM), Asymmetry (ASM), Differential Causality (DCAU)). The electroencephalography dataset used in the research was the public SEED dataset (SJTU Emotion EEG Dataset), obtained through auditory and visual stimuli in segments from Chinese emotional movies. The experiment employed to evaluate the model results was "subject-dependent". In this method, the Deep Neural Network (DNN) achieved an accuracy of 86.08%, surpassing SVM, albeit with significant processing time due to the optimization characteristics inherent to the algorithm. The GCNN algorithm achieved an average accuracy of 89.97% in the subject-dependent experiment. This work contributes to emotion detection in EEG, emphasizing the effectiveness of different models and underscoring the importance of selecting appropriate features and the ethical use of these technologies in practical applications. The GCNN emerges as the most promising methodology for future research.
引用
收藏
页数:30
相关论文
共 37 条
[1]  
Abhang P., 2016, Introduction to EEG- and Speech-Based Emotion Recognition, P19, DOI [DOI 10.1016/B978-0-12-804490-2.00002-6, 10.1016/b978-0-12-804490-2.00002-6, 10.1016/B978-0-12]
[2]   Automated Feature Extraction on AsMap for Emotion Classification Using EEG [J].
Ahmed, Md Zaved Iqubal ;
Sinha, Nidul ;
Phadikar, Souvik ;
Ghaderpour, Ebrahim .
SENSORS, 2022, 22 (06)
[3]   Emotions Recognition Using EEG Signals: A Survey [J].
Alarcao, Soraia M. ;
Fonseca, Manuel J. .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2019, 10 (03) :374-393
[4]   A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults [J].
Babayan, Anahit ;
Erbey, Miray ;
Kumral, Deniz ;
Reinelt, Janis D. ;
Reiter, Andrea M. F. ;
Roebbig, Josefin ;
Schaare, H. Lina ;
Uhlig, Marie ;
Anwander, Alfred ;
Bazin, Pierre-Louis ;
Horstmann, Annette ;
Lampe, Leonie ;
Nikulin, Vadim V. ;
Okon-Singer, Hadas ;
Preusser, Sven ;
Pampel, Andre ;
Rohr, Christiane S. ;
Sacher, Julia ;
Thoene-Otto, Angelika ;
Trapp, Sabrina ;
Nierhaus, Till ;
Altmann, Denise ;
Arelin, Katrin ;
Bloechl, Maria ;
Bongartz, Edith ;
Breig, Patric ;
Cesnaite, Elena ;
Chen, Sufang ;
Cozatl, Roberto ;
Czerwonatis, Saskia ;
Dambrauskaite, Gabriele ;
Dreyer, Maria ;
Enders, Jessica ;
Engelhardt, Melina ;
Fischer, Marie Michele ;
Forschack, Norman ;
Golchert, Johannes ;
Golz, Laura ;
Guran, C. Alexandrina ;
Hedrich, Susanna ;
Hentschel, Nicole ;
Hoffmann, Daria I. ;
Huntenburg, Julia M. ;
Jost, Rebecca ;
Kosatschek, Anna ;
Kunzendorf, Stella ;
Lammers, Hannah ;
Lauckner, Mark E. ;
Mahjoory, Keyvan ;
Kanaan, Ahmad S. .
SCIENTIFIC DATA, 2019, 6 (1)
[5]   A Review, Current Challenges, and Future Possibilities on Emotion Recognition Using Machine Learning and Physiological Signals [J].
Bota, Patricia J. ;
Wang, Chen ;
Fred, Ana L. N. ;
da Silva, Hugo Placido .
IEEE ACCESS, 2019, 7 :140990-141020
[6]   An Efficient LSTM Network for Emotion Recognition From Multichannel EEG Signals [J].
Du, Xiaobing ;
Ma, Cuixia ;
Zhang, Guanhua ;
Li, Jinyao ;
Lai, Yu-Kun ;
Zhao, Guozhen ;
Deng, Xiaoming ;
Liu, Yong-Jin ;
Wang, Hongan .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) :1528-1540
[7]  
Dwivedi Amit Kumar, 2024, 2024 11th International Conference on Signal Processing and Integrated Networks (SPIN), P372, DOI 10.1109/SPIN60856.2024.10512074
[8]   ICaps-ResLSTM: Improved capsule network and residual LSTM for EEG emotion recognition [J].
Fan, Cunhang ;
Xie, Heng ;
Tao, Jianhua ;
Li, Yongwei ;
Pei, Guanxiong ;
Li, Taihao ;
Lv, Zhao .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
[9]   A Cross-Culture Study on Multimodal Emotion Recognition Using Deep Learning [J].
Gan, Lu ;
Liu, Wei ;
Luo, Yun ;
Wu, Xun ;
Lu, Bao-Liang .
NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 :670-680
[10]  
Garces Correa A., 2007, Journal of Physics: Conference Series, V90, DOI 10.1088/1742-6596/90/1/012081