On-Device Domain Learning for Keyword Spotting on Low-Power Extreme Edge Embedded Systems

被引:5
作者
Cioflan, Cristian [1 ]
Cavigelli, Lukas [2 ]
Rusci, Manuele [3 ]
de Prado, Miguel [4 ]
Benini, Luca [1 ,5 ]
机构
[1] Swiss Fed Inst Technol, Integrated Syst Lab, Zurich, Switzerland
[2] Huawei Technol, Zurich Res Ctr, Zurich, Switzerland
[3] Katholieke Univ Leuven, ESAT, Leuven, Belgium
[4] VERSES AI, Vancouver, BC, Canada
[5] Univ Bologna, DEI, Bologna, Italy
来源
2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024 | 2024年
基金
瑞士国家科学基金会;
关键词
On-Device Learning; Domain Adaptation; Low-Power Microcontrollers; Extreme Edge; TinyML; Noise Robustness; Keyword Spotting;
D O I
10.1109/AICAS59952.2024.10595987
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Keyword spotting accuracy degrades when neural networks are exposed to noisy environments. On-site adaptation to previously unseen noise is crucial to recovering accuracy loss, and on-device learning is required to ensure that the adaptation process happens entirely on the edge device. In this work, we propose a fully on-device domain adaptation system achieving up to 14% accuracy gains over already-robust keyword spotting models. We enable on-device learning with less than 10 kB of memory, using only 100 labeled utterances to recover 5% accuracy after adapting to the complex speech noise. We demonstrate that domain adaptation can be achieved on ultra-low-power microcontrollers with as little as 806mJ in only 14 s on always-on, battery-operated devices.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 26 条
[1]  
Banbury C., 2021, NEURIPS
[2]   DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-Cost IoT MCUs [J].
Burrello, Alessio ;
Garofalo, Angelo ;
Bruschi, Nazareno ;
Tagliavini, Giuseppe ;
Rossi, Davide ;
Conti, Francesco .
IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (08) :1253-1268
[3]  
Chauhan J, 2022, EUR SIGNAL PR CONF, P424
[4]   Deep Learning With Edge Computing: A Review [J].
Chen, Jiasi ;
Ran, Xukan .
PROCEEDINGS OF THE IEEE, 2019, 107 (08) :1655-1674
[5]  
Chen TQ, 2018, PROCEEDINGS OF THE 13TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P579
[6]   Towards On-device Domain Adaptation for Noise-Robust Keyword Spotting [J].
Cioflan, Cristian ;
Cavigelli, Lukas ;
Rusci, Manuele ;
de Prado, Miguel ;
Benini, Luca .
2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, :82-85
[7]  
David R., 2021, P MACHINE LEARNING S, V3, P800, DOI DOI 10.48550/ARXIV.2010.08678
[8]  
Disabato Simone, 2020, AIChallengeIoT '20: Proceedings of the 2nd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, P7, DOI 10.1145/3417313.3429378
[9]  
Huang YT, 2019, INT CONF ACOUST SPEE, P6346, DOI 10.1109/ICASSP.2019.8682682
[10]  
Huang YT, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P5474, DOI 10.1109/ICASSP.2018.8462346