The determinant of {±1}-matrices and oriented hypergraphs
被引:0
|
作者:
Rusnak, Lucas J.
论文数: 0引用数: 0
h-index: 0
机构:
Texas State Univ, Dept Math, San Marcos, TX 78666 USATexas State Univ, Dept Math, San Marcos, TX 78666 USA
Rusnak, Lucas J.
[1
]
Reynes, Josephine
论文数: 0引用数: 0
h-index: 0
机构:
Texas State Univ, Dept Math, San Marcos, TX 78666 USA
Univ Waterloo, Combinator & Optimizat, Waterloo, ON N2L 3G1, CanadaTexas State Univ, Dept Math, San Marcos, TX 78666 USA
Reynes, Josephine
[1
,2
]
Li, Russell
论文数: 0引用数: 0
h-index: 0
机构:
Texas State Univ, Mathworks, San Marcos, TX 78666 USATexas State Univ, Dept Math, San Marcos, TX 78666 USA
Li, Russell
[4
]
Yan, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Cambridge, MA 02138 USA
Texas State Univ, Mathworks, San Marcos, TX 78666 USATexas State Univ, Dept Math, San Marcos, TX 78666 USA
Yan, Eric
[3
,4
]
Yu, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Texas State Univ, Mathworks, San Marcos, TX 78666 USATexas State Univ, Dept Math, San Marcos, TX 78666 USA
Yu, Justin
[4
]
机构:
[1] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
The determinants of {+/- 1}-matrices are calculated via the oriented hypergraphic Laplacian and summing over incidence generalizations of vertex cycle-covers. These cycle-covers are signed and partitioned into families based on their hyperedge containment. Every non-edge-monic family is shown to contribute a net value of 0 to the Laplacian, while each edge-monic family is shown to sum to the absolute value of the determinant of the original incidence matrix. Simple symmetries are identified as well as their relationship to Hadamard's maximum determinant problem. Finally, the entries of the incidence matrix are reclaimed using only the signs of an adjacency-minimal set of cycle-covers from an edge-monic family.
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
North Minzu Univ, Sch Math & Informat Sci, Yinchuan 750021, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Gao, Yi
Peng, Ji-gen
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Peng, Ji-gen
Yue, Shi-gang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lincoln, Sch Comp Sci, Lincoln LN6 7TS, EnglandXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China