Biochar mitigates the stimulatory effects of straw incorporation on N2O emission and N2O/(N2O + N2) ratio in upland soil

被引:0
|
作者
Li, Chenglin [1 ,2 ,3 ]
Wei, Zhijun [1 ,2 ,3 ]
Wang, Xiaomin [1 ,2 ,3 ]
Ma, Xiaofang [1 ]
Tang, Quan [4 ]
Zhao, Bingzi [1 ,2 ]
Shan, Jun [1 ,2 ,3 ]
Yan, Xiaoyuan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Soil Sci, Changshu Natl Agroecosyst Observat & Res Stn, Nanjing 210008, Peoples R China
[4] Yangzhou Univ, Minist Agr & Rural Affairs, Key Lab Arable Land Qual Monitoring & Evaluat, Yangzhou 225009, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrous oxide; Denitrification product ratio; SOC sequestration; Biochar amendment; Straw incorporation; Bacterial community; GREENHOUSE-GAS EMISSIONS; ORGANIC-MATTER; SOIL FERTILITY; IMPACTS; DENITRIFICATION; MECHANISMS; INCUBATION; AMENDMENT; ABUNDANCE; SYSTEM;
D O I
10.1016/j.jenvman.2024.122318
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Straw incorporation, a common agricultural strategy designed to enhance soil organic carbon (SOC), often leads to increased nitrous oxide (N2O) emission, potentially offsetting benefits of SOC sequestration. However, the mechanism and mitigation options for the enhanced N2O emission following straw incorporation remain unclear. Here, N-2 and N2O emission rate, as well as N2O/(N2O + N-2) ratio under four different fertilization treatments [i.e., non-fertilization (Control), conventional chemical fertilization (CF), conventional chemical fertilization plus straw incorporation (SWCF), and conventional chemical fertilization plus straw and biochar incorporation (SWBCF)] were investigated by a robotized sampling and analysis system. High-throughput sequencing was also employed to assess the variation of bacterial community across different treatments. The results showed CF, SWCF, and SWBCF fertilization treatments significantly increased N2O emission rate by 1.04, 2.01, and 1.29 folds, respectively, relative to Control treatment. Albeit no significant enhancements in N-2 emission rate, the N2O/(N2O + N-2) ratio significantly increased by 65.53%, 1.10 folds, and 69.49% in CF, SWCF, and SWBCF treatments, respectively. The partial least squares path modeling analysis further revealed that fertilization treatments slightly increased N-2 emission rate by increasing DOC content and keystone OTUs abundance. While the enhanced N2O emission rate and N2O/(N2O + N-2) ratio in the fertilization treatments was primarily determined by reducing DOC/NO3- ratio and specific bacteria module abundance dominated by Gaiellales, Solirubrobacterales, and Micrococcales. Furthermore, SWBCF treatment alleviated the increase in net global warming potential due to straw incorporation, as indicated by the higher SOC sequestration and lower N2O/(N2O + N-2) ratio therein. Collectively, these findings suggest that simultaneous application of straw and biochar has the potential to mitigate the risk of increased N2O emission from straw incorporation. This study provides valuable insights for developing targeted strategies in C sequestration and greenhouse gas mitigation, tackling the challenge presented by global climate change.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Recovery of groundwater N2O at the soil surface and its contribution to total N2O emissions
    Weymann, Daniel
    Well, Reinhard
    von der Heide, Carolin
    Boettcher, Juergen
    Flessa, Heiner
    Duijnisveld, Wilhelmus H. M.
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2009, 85 (03) : 299 - 312
  • [32] Microbial N2O consumption in and above marine N2O production hotspots
    Sun, Xin
    Jayakumar, Amal
    Tracey, John C.
    Wallace, Elizabeth
    Kelly, Colette L.
    Casciotti, Karen L.
    Ward, Bess B.
    ISME JOURNAL, 2021, 15 (05): : 1434 - 1444
  • [33] Production of N2 and N2O from nitrate ingested by sheep
    de Raphelis-Soissan, V.
    Nolan, J. V.
    Godwin, I. R.
    Newbold, J. R.
    Eyre, B. D.
    Erler, D. V.
    Hegarty, R. S.
    JOURNAL OF ANIMAL PHYSIOLOGY AND ANIMAL NUTRITION, 2018, 102 (01) : E176 - E182
  • [34] The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O
    Sun, Qing
    Joos, Fortunat
    Lienert, Sebastian
    Berthet, Sarah
    Carroll, Dustin
    Gong, Cheng
    Ito, Akihiko
    Jain, Atul K.
    Kou-Giesbrecht, Sian
    Landolfi, Angela
    Manizza, Manfredi
    Pan, Naiqing
    Prather, Michael
    Regnier, Pierre
    Resplandy, Laure
    Seferian, Roland
    Shi, Hao
    Suntharalingam, Parvadha
    Thompson, Rona L.
    Tian, Hanqin
    Vuichard, Nicolas
    Zaehle, Soenke
    Zhu, Qing
    GLOBAL BIOGEOCHEMICAL CYCLES, 2024, 38 (07)
  • [35] Decreased soil N2O and N2 emissions during the succession of subtropical forests
    Yuan, Mingyue
    Li, Ping
    Lu, Zhiyun
    Chen, Zhe
    PLANT AND SOIL, 2024,
  • [36] Biochar-induced N2O emission reductions after field incorporation in a loam soil
    Ameloot, Nele
    Maenhout, Peter
    De Neve, Stefaan
    Sleutel, Steven
    GEODERMA, 2016, 267 : 10 - 16
  • [37] Diffusion of 15N-labelled N2O into soil columns:: a promising method to examine the fate of N2O in subsoils
    Clough, TJ
    Kelliher, FM
    Wang, YP
    Sherlock, RR
    SOIL BIOLOGY & BIOCHEMISTRY, 2006, 38 (06): : 1462 - 1468
  • [38] Effects of fresh and aged biochar on N2O emission from a poplar plantation soil
    Liao, Xiaolin
    Chen, Yajuan
    Hu, Jing
    Zhang, Chi
    Mao, Shuxia
    Ruan, Honghua
    Malghani, Saadatullath
    PEDOSPHERE, 2025, 35 (02) : 435 - 447
  • [39] Exploring dissolved N2O characteristics and unearthing indirect N2O emission factors in the shallow groundwater of paddy and upland fields
    Pan, Yongchun
    She, Dongli
    Ding, Jihui
    Shi, Zhenqi
    Abulaiti, Alimu
    Hu, Lei
    Huang, Xuan
    Liu, Ruliang
    Wang, Fang
    Shan, Jun
    Xia, Yongqiu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 934
  • [40] Nitrogen turnover and N2O/N2 ratio of three contrasting tropical soils amended with biochar
    Fungo, Bernard
    Chen, Zhe
    Butterbach-Bahl, Klaus
    Lehmannn, Johannes
    Saiz, Gustavo
    Braojos, Victor
    Kolar, Allison
    Rittl, Tatjana F.
    Tenywa, Moses
    Kalbitz, Karsten
    Neufeldt, Henry
    Dannenmann, Michael
    GEODERMA, 2019, 348 : 12 - 20