Biochar mitigates the stimulatory effects of straw incorporation on N2O emission and N2O/(N2O + N2) ratio in upland soil

被引:0
|
作者
Li, Chenglin [1 ,2 ,3 ]
Wei, Zhijun [1 ,2 ,3 ]
Wang, Xiaomin [1 ,2 ,3 ]
Ma, Xiaofang [1 ]
Tang, Quan [4 ]
Zhao, Bingzi [1 ,2 ]
Shan, Jun [1 ,2 ,3 ]
Yan, Xiaoyuan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Soil Sci, Changshu Natl Agroecosyst Observat & Res Stn, Nanjing 210008, Peoples R China
[4] Yangzhou Univ, Minist Agr & Rural Affairs, Key Lab Arable Land Qual Monitoring & Evaluat, Yangzhou 225009, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrous oxide; Denitrification product ratio; SOC sequestration; Biochar amendment; Straw incorporation; Bacterial community; GREENHOUSE-GAS EMISSIONS; ORGANIC-MATTER; SOIL FERTILITY; IMPACTS; DENITRIFICATION; MECHANISMS; INCUBATION; AMENDMENT; ABUNDANCE; SYSTEM;
D O I
10.1016/j.jenvman.2024.122318
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Straw incorporation, a common agricultural strategy designed to enhance soil organic carbon (SOC), often leads to increased nitrous oxide (N2O) emission, potentially offsetting benefits of SOC sequestration. However, the mechanism and mitigation options for the enhanced N2O emission following straw incorporation remain unclear. Here, N-2 and N2O emission rate, as well as N2O/(N2O + N-2) ratio under four different fertilization treatments [i.e., non-fertilization (Control), conventional chemical fertilization (CF), conventional chemical fertilization plus straw incorporation (SWCF), and conventional chemical fertilization plus straw and biochar incorporation (SWBCF)] were investigated by a robotized sampling and analysis system. High-throughput sequencing was also employed to assess the variation of bacterial community across different treatments. The results showed CF, SWCF, and SWBCF fertilization treatments significantly increased N2O emission rate by 1.04, 2.01, and 1.29 folds, respectively, relative to Control treatment. Albeit no significant enhancements in N-2 emission rate, the N2O/(N2O + N-2) ratio significantly increased by 65.53%, 1.10 folds, and 69.49% in CF, SWCF, and SWBCF treatments, respectively. The partial least squares path modeling analysis further revealed that fertilization treatments slightly increased N-2 emission rate by increasing DOC content and keystone OTUs abundance. While the enhanced N2O emission rate and N2O/(N2O + N-2) ratio in the fertilization treatments was primarily determined by reducing DOC/NO3- ratio and specific bacteria module abundance dominated by Gaiellales, Solirubrobacterales, and Micrococcales. Furthermore, SWBCF treatment alleviated the increase in net global warming potential due to straw incorporation, as indicated by the higher SOC sequestration and lower N2O/(N2O + N-2) ratio therein. Collectively, these findings suggest that simultaneous application of straw and biochar has the potential to mitigate the risk of increased N2O emission from straw incorporation. This study provides valuable insights for developing targeted strategies in C sequestration and greenhouse gas mitigation, tackling the challenge presented by global climate change.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A Study on the N2O Separation Process from Crude N2O
    Cho, Jungho
    Lee, Taekhong
    Park, Jongki
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2005, 43 (04): : 467 - 473
  • [22] On the potential of δ18O and δ15N to assess N2O reduction to N2 in soil
    Decock, C.
    Six, J.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2013, 64 (05) : 610 - 620
  • [23] The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system
    Domeignoz-Horta, Luiz A.
    Spor, Ayme
    Bru, David
    Breuil, Marie-Christine
    Bizouard, Florian
    Leonard, Joel
    Philippot, Laurent
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [24] Differential responses of soil N2O to biochar depend on the predominant microbial pathway
    Ji, Cheng
    Li, Shuqing
    Geng, Yajun
    Miao, Yingcheng
    Ding, Ying
    Liu, Shuwei
    Zou, Jianwen
    APPLIED SOIL ECOLOGY, 2020, 145
  • [25] SWAT-N2O coupler: An integration tool for soil N2O emission modeling
    Gao, Xiang
    Ouyang, Wei
    Hao, Zengchao
    Xie, Xianhong
    Lian, Zhongmin
    Hao, Xin
    Wang, Xuelei
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 115 (86-97) : 86 - 97
  • [26] N2, N2O and O2 profiles in a Tagus estuary salt marsh
    Cartaxana, P
    Lloyd, D
    ESTUARINE COASTAL AND SHELF SCIENCE, 1999, 48 (06) : 751 - 756
  • [27] Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol
    Horak, Jan
    Kondrlova, Elena
    Igaz, Dusan
    Simansky, Vladimir
    Felber, Raphael
    Lukac, Martin
    Balashov, Eugene V.
    Buchkina, Natalya P.
    Rizhiya, Elena Y.
    Jankowski, Michal
    BIOLOGIA, 2017, 72 (09) : 995 - 1001
  • [28] Sources and sinks for N2O, can microbiologist help to mitigate N2O emissions?
    Bakken, Lars R.
    Frostegard, Asa
    ENVIRONMENTAL MICROBIOLOGY, 2017, 19 (12) : 4801 - 4805
  • [29] Can N Fertilizer Addition Affect N2O Isotopocule Signatures for Soil N2O Source Partitioning?
    Zhang, Peiyi
    Wen, Teng
    Hu, Yangmei
    Zhang, Jinbo
    Cai, Zucong
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (09)
  • [30] Recovery of groundwater N2O at the soil surface and its contribution to total N2O emissions
    Daniel Weymann
    Reinhard Well
    Carolin von der Heide
    Jürgen Böttcher
    Heiner Flessa
    Wilhelmus H. M. Duijnisveld
    Nutrient Cycling in Agroecosystems, 2009, 85 : 299 - 312