Hardy-Leray potential;
Liouville theorem;
classification;
method of moving planes;
ASYMPTOTIC SYMMETRY;
CRITICAL EXPONENTS;
POSITIVE SOLUTIONS;
LOCAL BEHAVIOR;
LIOUVILLE;
EXISTENCE;
D O I:
10.3836/tjm/1502179389
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
This paper is concerned with a semilinear elliptic equation with the Hardy-Leray potential. We employ the method of moving planes to prove the radial symmetry of positive solutions. Based on this result, we obtain the Liouville theorem in subcritical case. In addition, we find special radial solutions in critical case. All the properties above are similar to the corresponding results of the Lane-Emden equation.
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Chen, Huyuan
Hajaiej, Hichem
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ Los Angeles, Los Angeles, CA USA
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Hajaiej, Hichem
Wang, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
机构:
Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, Bucharest 050711, RomaniaRomanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, Bucharest 050711, Romania