Electricity Price Forecasting via Statistical and Deep Learning Approaches: The German Case

被引:8
作者
Poggi, Aurora [1 ]
Di Persio, Luca [1 ]
Ehrhardt, Matthias [2 ]
机构
[1] Univ Verona, Coll Math, Dept Comp Sci, I-37134 Verona, Italy
[2] Univ Wuppertal, Chair Appl & Computat Math, D-42119 Wuppertal, Germany
来源
APPLIEDMATH | 2023年 / 3卷 / 02期
关键词
electricity price forecasting; univariate model; statistical method; autoregressive; machine learning; deep learning; neural network;
D O I
10.3390/appliedmath3020018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our research involves analyzing the latest models used for electricity price forecasting, which include both traditional inferential statistical methods and newer deep learning techniques. Through our analysis of historical data and the use of multiple weekday dummies, we have proposed an innovative solution for forecasting electricity spot prices. This solution involves breaking down the spot price series into two components: a seasonal trend component and a stochastic component. By utilizing this approach, we are able to provide highly accurate predictions for all considered time frames.
引用
收藏
页码:316 / 342
页数:27
相关论文
共 32 条
  • [1] Acquah de-G.H., 2010, J DEV AGR EC, V2, P001
  • [2] [Anonymous], 2008, P 4 IASTED INT C ADV
  • [3] GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY
    BOLLERSLEV, T
    [J]. JOURNAL OF ECONOMETRICS, 1986, 31 (03) : 307 - 327
  • [4] Burger B, 2018, Power Generation in Germany-Assessment of 2017
  • [5] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [6] Chen Zhi Yuan, 2020, ITCC 2020: Proceedings of the 2nd International Conference on Information Technology and Computer Communications, P43, DOI 10.1145/3417473.3417481
  • [7] TIME-SERIES ANALYSIS - FORECASTING AND CONTROL - BOX,GEP AND JENKINS,GM
    GEURTS, M
    [J]. JOURNAL OF MARKETING RESEARCH, 1977, 14 (02) : 269 - 269
  • [8] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [9] Gregory R. L., 2019, J OPEN SOURCE SOFTW, V4, P1237, DOI [10.21105/joss.01237, DOI 10.7717/PEERJ.453, DOI 10.21105/JOSS.01237]
  • [10] Forecasting Agricultural Commodity Prices Using Dual Input Attention LSTM
    Gu, Yeong Hyeon
    Jin, Dong
    Yin, Helin
    Zheng, Ri
    Piao, Xianghua
    Yoo, Seong Joon
    [J]. AGRICULTURE-BASEL, 2022, 12 (02):