Multifunctional high-entropy materials

被引:16
|
作者
Han, Liuliu [1 ]
Zhu, Shuya [2 ]
Rao, Ziyuan [1 ]
Scheu, Christina [1 ]
Ponge, Dirk [1 ]
Ludwig, Alfred [3 ]
Zhang, Hongbin [4 ]
Gutfleisch, Oliver [1 ,4 ]
Hahn, Horst [5 ,6 ]
Li, Zhiming [2 ]
Raabe, Dierk [1 ]
机构
[1] Max Planck Inst Sustainable Mat, Dusseldorf, Germany
[2] Cent South Univ, Sch Mat Sci & Engn, Changsha, Peoples R China
[3] Ruhr Univ Bochum, Inst Mat, Bochum, Germany
[4] Tech Univ Darmstadt, Inst Mat Sci, Darmstadt, Germany
[5] Karlsruhe Inst Technol, Inst Nanotechnol, Karlsruhe, Germany
[6] Univ Oklahoma, Sch Sustainable Chem Biol & Mat Engn, Norman, OK USA
来源
关键词
HIGH THERMOELECTRIC PERFORMANCE; SHAPE-MEMORY ALLOYS; MAGNETIC-PROPERTIES; MECHANICAL-PROPERTIES; HYDROGEN STORAGE; PHYSICAL-PROPERTIES; THERMAL-EXPANSION; MICROSTRUCTURE; BEHAVIOR; DESIGN;
D O I
10.1038/s41578-024-00720-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Entropy-related phase stabilization can allow compositionally complex solid solutions of multiple principal elements. The massive mixing approach was originally introduced for metals and has recently been extended to ionic, semiconductor, polymer and low-dimensional materials. Multielement mixing can leverage new types of random, weakly ordered clustering and precipitation states in bulk materials as well as at interfaces and dislocations. The many possible atomic configurations offer opportunities to discover and exploit new functionalities, as well as to create new local symmetry features, ordering phenomena and interstitial configurations. This opens up a huge chemical and structural space in which uncharted phase states, defect chemistries, mechanisms and properties, some previously thought to be mutually exclusive, can be reconciled in one material. Earlier research concentrated on mechanical properties such as strength, toughness, fatigue and ductility. This Review shifts the focus towards multifunctional property profiles, including electronic, electrochemical, mechanical, magnetic, catalytic, hydrogen-related, Invar and caloric characteristics. Disruptive design opportunities lie in combining several of these features, rendering high-entropy materials multifunctional without sacrificing their unique mechanical properties. High-entropy materials leverage phase stabilization through mixing several elements and are primarily known for their mechanical strength and high toughness. This Review explores their use as a platform for multifunctional material design, in which several, even conflicting, properties can be reconciled because of the compositional tolerance inherent in the high-entropy concept, including electronic, magnetic, mechanical, catalytic, thermal expansion and hydrogen storage properties.
引用
收藏
页码:846 / 865
页数:20
相关论文
共 50 条
  • [41] Opportunities for High-Entropy Materials in Rechargeable Batteries
    Chen, Yuwei
    Fu, Haoyu
    Huang, Yangyang
    Huang, Liqiang
    Zheng, Xueying
    Dai, Yiming
    Huang, Yunhui
    Luo, Wei
    ACS MATERIALS LETTERS, 2021, 3 (02): : 160 - 170
  • [42] Local Nanostructure in Multicomponent High-Entropy Materials
    Brian Cantor
    High Entropy Alloys & Materials, 2024, 2 (2): : 277 - 306
  • [43] Order and Disorder in Amorphous and High-Entropy Materials
    XueHui Yan
    Peter K. Liaw
    Yong Zhang
    Metallurgical and Materials Transactions A, 2021, 52 : 2111 - 2122
  • [44] Author Correction: Synthesis of high-entropy materials
    Yifan Sun
    Sheng Dai
    Nature Synthesis, 2025, 4 (1): : 142 - 142
  • [45] High-entropy alloys as high-temperature thermoelectric materials
    Shafeie, Samrand
    Guo, Sheng
    Hu, Qiang
    Fahlquist, Henrik
    Erhart, Paul
    Palmqvist, Anders
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (18)
  • [46] From High-Entropy Alloys to High-Entropy Steels
    Raabe, Dierk
    Tasan, Cemal Cem
    Springer, Hauke
    Bausch, Michael
    STEEL RESEARCH INTERNATIONAL, 2015, 86 (10) : 1127 - 1138
  • [47] High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics
    Gild, Joshua
    Zhang, Yuanyao
    Harrington, Tyler
    Jiang, Sicong
    Hu, Tao
    Quinn, Matthew C.
    Mellor, William M.
    Zhou, Naixie
    Vecchio, Kenneth
    Luo, Jian
    SCIENTIFIC REPORTS, 2016, 6
  • [48] High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics
    Joshua Gild
    Yuanyao Zhang
    Tyler Harrington
    Sicong Jiang
    Tao Hu
    Matthew C. Quinn
    William M. Mellor
    Naixie Zhou
    Kenneth Vecchio
    Jian Luo
    Scientific Reports, 6
  • [49] Entropy designed composites: Leveraging phase instability in high-entropy materials
    Bowman, William J.
    MATTER, 2024, 7 (08) : 2753 - 2755
  • [50] Era of entropy: Synthesis, structure, properties, and applications of high-entropy materials
    Rost, Christina M.
    Mazza, Alessandro R.
    McCormack, Scott J.
    Page, Katharine
    Sarkar, Abhishek
    Ward, T. Zac
    APPLIED PHYSICS LETTERS, 2024, 125 (20)