Multifunctional high-entropy materials

被引:16
|
作者
Han, Liuliu [1 ]
Zhu, Shuya [2 ]
Rao, Ziyuan [1 ]
Scheu, Christina [1 ]
Ponge, Dirk [1 ]
Ludwig, Alfred [3 ]
Zhang, Hongbin [4 ]
Gutfleisch, Oliver [1 ,4 ]
Hahn, Horst [5 ,6 ]
Li, Zhiming [2 ]
Raabe, Dierk [1 ]
机构
[1] Max Planck Inst Sustainable Mat, Dusseldorf, Germany
[2] Cent South Univ, Sch Mat Sci & Engn, Changsha, Peoples R China
[3] Ruhr Univ Bochum, Inst Mat, Bochum, Germany
[4] Tech Univ Darmstadt, Inst Mat Sci, Darmstadt, Germany
[5] Karlsruhe Inst Technol, Inst Nanotechnol, Karlsruhe, Germany
[6] Univ Oklahoma, Sch Sustainable Chem Biol & Mat Engn, Norman, OK USA
来源
关键词
HIGH THERMOELECTRIC PERFORMANCE; SHAPE-MEMORY ALLOYS; MAGNETIC-PROPERTIES; MECHANICAL-PROPERTIES; HYDROGEN STORAGE; PHYSICAL-PROPERTIES; THERMAL-EXPANSION; MICROSTRUCTURE; BEHAVIOR; DESIGN;
D O I
10.1038/s41578-024-00720-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Entropy-related phase stabilization can allow compositionally complex solid solutions of multiple principal elements. The massive mixing approach was originally introduced for metals and has recently been extended to ionic, semiconductor, polymer and low-dimensional materials. Multielement mixing can leverage new types of random, weakly ordered clustering and precipitation states in bulk materials as well as at interfaces and dislocations. The many possible atomic configurations offer opportunities to discover and exploit new functionalities, as well as to create new local symmetry features, ordering phenomena and interstitial configurations. This opens up a huge chemical and structural space in which uncharted phase states, defect chemistries, mechanisms and properties, some previously thought to be mutually exclusive, can be reconciled in one material. Earlier research concentrated on mechanical properties such as strength, toughness, fatigue and ductility. This Review shifts the focus towards multifunctional property profiles, including electronic, electrochemical, mechanical, magnetic, catalytic, hydrogen-related, Invar and caloric characteristics. Disruptive design opportunities lie in combining several of these features, rendering high-entropy materials multifunctional without sacrificing their unique mechanical properties. High-entropy materials leverage phase stabilization through mixing several elements and are primarily known for their mechanical strength and high toughness. This Review explores their use as a platform for multifunctional material design, in which several, even conflicting, properties can be reconciled because of the compositional tolerance inherent in the high-entropy concept, including electronic, magnetic, mechanical, catalytic, thermal expansion and hydrogen storage properties.
引用
收藏
页码:846 / 865
页数:20
相关论文
共 50 条
  • [31] High-entropy monoborides: Towards superhard materials
    Qin, Mingde
    Yan, Qizhang
    Wang, Haoren
    Hu, Chongze
    Vecchio, Kenneth S.
    Luo, Jian
    SCRIPTA MATERIALIA, 2020, 189 (189) : 101 - 105
  • [32] High-entropy and compositionally complex battery materials
    Strauss, F.
    Botros, M.
    Breitung, B.
    Brezesinski, T.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (12)
  • [33] A formula to predict the synthesizability of high-entropy materials
    Eckert, Hagen
    Curtarolo, Stefano
    NATURE, 2024,
  • [34] Research Progress of High-entropy Ceramic Materials
    Xie H.
    Xiang H.
    Ma R.
    Chen Y.
    Liu G.
    Yao S.
    Mao A.
    Cailiao Daobao/Materials Reports, 2022, 36 (06):
  • [35] High-entropy materials for energy and electronic applications
    Simon Schweidler
    Miriam Botros
    Florian Strauss
    Qingsong Wang
    Yanjiao Ma
    Leonardo Velasco
    Gabriel Cadilha Marques
    Abhishek Sarkar
    Christian Kübel
    Horst Hahn
    Jasmin Aghassi-Hagmann
    Torsten Brezesinski
    Ben Breitung
    Nature Reviews Materials, 2024, 9 : 266 - 281
  • [36] A review of high-entropy materials with their unique applications
    Ren, Juanna
    Kumkale, Vilas Y.
    Hou, Hua
    Kadam, Vishal S.
    Jagtap, Chaitali V.
    Lokhande, Prasad E.
    Pathan, Habib M.
    Pereira, Aricson
    Lei, Hanhui
    Liu, Terence Xiaoteng
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (02)
  • [37] Order and Disorder in Amorphous and High-Entropy Materials
    Yan, XueHui
    Liaw, Peter K.
    Zhang, Yong
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (06): : 2111 - 2122
  • [38] High-Entropy Engineering in Thermoelectric Materials: A Review
    Ghosh, Subrata
    Raman, Lavanya
    Sridar, Soumya
    Li, Wenjie
    CRYSTALS, 2024, 14 (05)
  • [39] Multifunctional Catalysts Based on High-Entropy Transition Metal Alloys
    Pugacheva, E. V.
    Zhuk, S. Ya.
    Bystrova, I. M.
    Romazeva, K. A.
    Ikornikov, D. M.
    Boyarchenko, O. D.
    Khomenko, N. Yu.
    Belousova, O. V.
    Sanin, V. N.
    Borshch, V. N.
    INTERNATIONAL JOURNAL OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS, 2024, 33 (03) : 200 - 208
  • [40] High-entropy materials for catalysis: A new frontier
    Sun, Yifan
    Dai, Sheng
    SCIENCE ADVANCES, 2021, 7 (20)