Forecasting of S&P 500 ESG Index by Using CEEMDAN and LSTM Approach

被引:0
|
作者
Aggarwal, Divya [1 ]
Banerjee, Sougata [2 ]
机构
[1] Management Dev Inst Gurgaon, Finance & Accounting, Gurugram, India
[2] Indian Inst Management Ranchi IIM R, Finance & Accounting, Ranchi, India
关键词
CEEMDAN; ESG; LSTM; market efficiency; stock market prediction; SVM; EMPIRICAL MODE DECOMPOSITION; SOCIALLY RESPONSIBLE INVESTMENT; STOCK-PRICE INDEX; TIME-SERIES; MARKET-EFFICIENCY; PREDICTING STOCK; VOLATILITY; HYPOTHESIS; MEMORY;
D O I
10.1002/for.3201
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study aims to forecast the S&P 500 ESG index using the mixture model of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and long short-term memory (LSTM) prediction models. CEEMDAN enables decomposing the index's original return series into different intrinsic mode functions (IMFs) and a residual series. The decomposed IMFs are then regrouped into aggregate series depicting high frequency and medium frequency, while the residual series represent the trend component. LSTM algorithm is used on the aggregated series to obtain predicted values of the same. The study compares different prediction algorithms to identify their performance and explore the predictive power of the hybrid models.
引用
收藏
页码:339 / 355
页数:17
相关论文
共 50 条
  • [1] A hybrid modeling approach for forecasting the volatility of S&P 500 index return
    Hajizadeh, E.
    Seifi, A.
    Zarandi, M. N. Fazel
    Turksen, I. B.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) : 431 - 436
  • [2] Forecasting the S&P 500 Index Using Mathematical-Based Sentiment Analysis and Deep Learning Models: A FinBERT Transformer Model and LSTM
    Kim, Jihwan
    Kim, Hui-Sang
    Choi, Sun-Yong
    AXIOMS, 2023, 12 (09)
  • [3] A test of efficiency for the S&P 500 index option market using the generalized spectrum method
    Huang, Henry H.
    Wang, Kent
    Wang, Zhanglong
    JOURNAL OF BANKING & FINANCE, 2016, 64 : 52 - 70
  • [4] Forecasting stock index price using the CEEMDAN-LSTM model
    Lin, Yu
    Yan, Yan
    Xu, Jiali
    Liao, Ying
    Ma, Feng
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2021, 57
  • [5] S&P BSE Sensex and S&P BSE IT return forecasting using ARIMA
    Challa, Madhavi Latha
    Malepati, Venkataramanaiah
    Kolusu, Siva Nageswara Rao
    FINANCIAL INNOVATION, 2020, 6 (01)
  • [6] Forecasting relative returns for S&P 500 stocks using machine learning
    Htun, Htet Htet
    Biehl, Michael
    Petkov, Nicolai
    FINANCIAL INNOVATION, 2024, 10 (01)
  • [7] Intraday information from S&P 500 Index futures options
    Lim, Kian Guan
    Chen, Ying
    Yap, Nelson K. L.
    JOURNAL OF FINANCIAL MARKETS, 2019, 42 : 29 - 55
  • [8] DO S&P 500 AND KOSPI MOVE TOGETHER?: A FUNCTIONAL REGRESSION APPROACH
    Kim, Soobin
    Kim, Chang Sik
    KOREAN ECONOMIC REVIEW, 2010, 26 (02): : 401 - 430
  • [9] An enhanced LGSA-SVM for S&P 500 index forecast
    Wang, Jinxin
    Liu, Zhengyang
    Shang, Wei
    Wang, Shouyang
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4176 - 4183
  • [10] Reexamining the uncertain information hypothesis on the S&P 500 Index and SPDRs
    Yu S.
    Rentzler J.
    Tandon K.
    Review of Quantitative Finance and Accounting, 2010, 34 (1) : 1 - 21