Interpretable Fuzzy Embedded Neural Network for Multivariate Time-Series Forecasting

被引:0
|
作者
La, Hoang-Loc [1 ]
Tran, Vi Ngoc-Nha [1 ]
La, Hung Manh [2 ]
Ha, Phuong Hoai [1 ]
机构
[1] Arctic Univ Norway, Tromso, Norway
[2] Nevada Univ Reno, Reno, NV USA
来源
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, ACIIDS 2024 | 2024年 / 14796卷
关键词
Interpretability in Deep Learning; Multivariate time-series forecasting; Fuzzy Systems;
D O I
10.1007/978-981-97-4985-0_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interpretability in Deep Learning has become a critical component in applied AI research. When it comes to understanding deep learning in time-series contexts, many approaches emphasize visualization methods and post-hoc techniques. Conversely, the EcFNN approach integrates a deep learning model with a fuzzy logic system. This system generates fuzzy rules to unveil the black-box nature of the decision-making of the embedded neural network. These linguistic fuzzy rules are simpler for humans to understand. However, the EcFNN does not support multivariate time-series problems. In this paper, we develop a method called E-EcFNN that supports multivariate time-series problems. Notably, our experiments indicate that our new method provides interpretability and maintains a competitive level of accuracy compared to other baselines.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 50 条
  • [21] Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
    Wu, Zonghan
    Pan, Shirui
    Long, Guodong
    Jiang, Jing
    Chang, Xiaojun
    Zhang, Chengqi
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 753 - 763
  • [22] Deep transition network with gating mechanism for multivariate time series forecasting
    Yimeng Wang
    Shi Feng
    Bing Wang
    Jihong Ouyang
    Applied Intelligence, 2023, 53 : 24346 - 24359
  • [23] Deep transition network with gating mechanism for multivariate time series forecasting
    Wang, Yimeng
    Feng, Shi
    Wang, Bing
    Ouyang, Jihong
    APPLIED INTELLIGENCE, 2023, 53 (20) : 24346 - 24359
  • [24] Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting
    Shao, Zezhi
    Zhang, Zhao
    Wang, Fei
    Xu, Yongjun
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1567 - 1577
  • [25] Synergizing Two Types of Fuzzy Information Granules for Accurate and Interpretable Multistep Forecasting of Time Series
    Tang, Yuqing
    Yu, Fusheng
    Pedrycz, Witold
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (10) : 5910 - 5923
  • [26] MFFCNN: multi-scale fractional Fourier transform convolutional neural network for multivariate time series forecasting
    Chen, Wuqi
    Ye, Junjie
    Zhao, Chunna
    Huang, Yaqun
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02)
  • [27] Network Filtering of Spatial-temporal GNN for Multivariate Time-series Prediction
    Wang, Yuanrong
    Aste, Tomaso
    3RD ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2022, 2022, : 463 - 470
  • [28] Time-aware personalized graph convolutional network for multivariate time series forecasting
    Li, Zhuolin
    Gao, Ziheng
    Zhang, Xiaolin
    Zhang, Gaowei
    Xu, Lingyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [29] Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting
    Chen, Donghui
    Chen, Ling
    Shang, Zongjiang
    Zhang, Youdong
    Wen, Bo
    Yang, Chenghu
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2025, 19 (01)
  • [30] Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
    Huang, Lei
    Mao, Feng
    Zhang, Kai
    Li, Zhiheng
    SENSORS, 2022, 22 (03)