Enhancing next destination prediction: A novel long short-term memory neural network approach using real-world airline data

被引:0
|
作者
Salihoglu, Salih [1 ]
Koksal, Gulser [2 ]
Abar, Orhan [3 ]
机构
[1] Middle East Tech Univ, Dept Ind Engn, Ankara, Turkiye
[2] TED Univ, Dept Ind Engn, Ankara, Turkiye
[3] Osmaniye Korkut Ata Univ, Dept Comp Engn, Osmaniye, Turkiye
关键词
Next destination prediction; Long short-term memory; Deep learning;
D O I
10.1016/j.engappai.2024.109266
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the modern transportation industry, accurate prediction of travelers' next destinations brings multiple benefits to companies, such as customer satisfaction and targeted marketing. This study focuses on developing a precise model that captures the sequential patterns and dependencies in travel data, enabling accurate predictions of individual travelers' future destinations. To achieve this, a novel model architecture with a sliding window approach based on Long Short-Term Memory (LSTM) is proposed for destination prediction in the transportation industry. The experimental results highlight satisfactory performance and high scores achieved by the proposed model across different data sizes and performance metrics. Additionally, a comparative analysis highlights the superior ability of the LSTM model to capture complex temporal dependencies in travel data. This research contributes to advancing destination prediction methods, empowering companies to deliver personalized recommendations and optimize customer experiences in the dynamic travel landscape.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Chinese Lyrics Generation Using Long Short-Term Memory Neural Network
    Wu, Xing
    Du, Zhikang
    Zhong, Mingyu
    Dai, Shuji
    Liu, Yazhou
    ADVANCES IN ARTIFICIAL INTELLIGENCE: FROM THEORY TO PRACTICE (IEA/AIE 2017), PT II, 2017, 10351 : 419 - 427
  • [22] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Lemos Neto, Alvaro C.
    Coelho, Rodrigo A.
    de Castro, Cristiano L.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (05) : 1457 - 1465
  • [23] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Álvaro C. Lemos Neto
    Rodrigo A. Coelho
    Cristiano L. de Castro
    Journal of Control, Automation and Electrical Systems, 2022, 33 : 1457 - 1465
  • [24] Correlation-based modified long short-term memory network approach for software defect prediction
    Suresh Kumar Pemmada
    H. S. Behera
    Janmenjoy Nayak
    Bighnaraj Naik
    Evolving Systems, 2022, 13 : 869 - 887
  • [25] Correlation-based modified long short-term memory network approach for software defect prediction
    Pemmada, Suresh Kumar
    Behera, H. S.
    Nayak, Janmenjoy
    Naik, Bighnaraj
    EVOLVING SYSTEMS, 2022, 13 (06) : 869 - 887
  • [26] Waste Prediction Approach Using Hybrid Long Short-Term Memory with Support Vector Machine
    Fatovatikhah, Farnaz
    Ahmedy, Ismail
    Noor, Rafidah Md
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [27] A Two-Stage Big Data Analytics Framework with Real World Applications Using Spark Machine Learning and Long Short-Term Memory Network
    Khan, Muhammad Ashfaq
    Karim, Md Rezaul
    Kim, Yangwoo
    SYMMETRY-BASEL, 2018, 10 (10):
  • [28] Long Short-Term Memory Recurrent Neural Network for Tidal Level Forecasting
    Yang, Cheng-Hong
    Wu, Chih-Hsien
    Hsieh, Chih-Min
    IEEE ACCESS, 2020, 8 (08) : 159389 - 159401
  • [29] A hybrid convolutional neural network with long short-term memory for statistical arbitrage
    Eggebrecht, P.
    Luetkebohmert, E.
    QUANTITATIVE FINANCE, 2023, 23 (04) : 595 - 613
  • [30] Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network
    Kyuhwan Yeon
    Kyunghan Min
    Jaewook Shin
    Myoungho Sunwoo
    Manbae Han
    International Journal of Automotive Technology, 2019, 20 : 713 - 722