RM-UNet: UNet-like Mamba with rotational SSM module for medical image segmentation

被引:3
作者
Tang, Hao [1 ]
Huang, Guoheng [1 ]
Cheng, Lianglun [1 ]
Yuan, Xiaochen [2 ]
Tao, Qi [3 ]
Chen, Xuhang [4 ]
Zhong, Guo [5 ]
Yang, Xiaohui [6 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[3] Guangdong Technion Israel Inst Technol, Dept Mech Engn Robot, Shantou 515063, Peoples R China
[4] Huizhou Univ, Sch Comp Sci & Engn, Huizhou 516007, Peoples R China
[5] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou 510006, Peoples R China
[6] Sun Yat sen Univ, Affiliated Hosp 3, Dept Gynecol, Guangzhou, Peoples R China
关键词
U-Net; State Space Models; Medical image segmentation; Mamba; LSIL; U-NET ARCHITECTURE; TRANSFORMER;
D O I
10.1007/s11760-024-03484-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate segmentation of tissues and lesions is crucial for disease diagnosis, treatment planning, and surgical navigation. Yet, the complexity of medical images presents significant challenges for traditional Convolutional Neural Networks and Transformer models due to their limited receptive fields or high computational complexity. State Space Models (SSMs) have recently shown notable vision performance, particularly Mamba and its variants. However, their feature extraction methods may not be sufficiently effective and retain some redundant structures, leaving room for parameter reduction. In response to these challenges, we introduce a methodology called Rotational Mamba-UNet, characterized by Residual Visual State Space (ResVSS) block and Rotational SSM Module. The ResVSS block is devised to mitigate network degradation caused by the diminishing efficacy of information transfer from shallower to deeper layers. Meanwhile, the Rotational SSM Module is devised to tackle the challenges associated with channel feature extraction within State Space Models. Finally, we propose a weighted multi-level loss function, which fully leverages the outputs of the decoder's three stages for supervision. We conducted experiments on ISIC17, ISIC18, CVC-300, Kvasir-SEG, CVC-ColonDB, Kvasir-Instrument datasets, and Low-grade Squamous Intraepithelial Lesion datasets provided by The Third Affiliated Hospital of Sun Yat-sen University, demonstrating the superior segmentation performance of our proposed RM-UNet. Additionally, compared to the previous VM-UNet, our model achieves a one-third reduction in parameters. Our code is available at https://github.com/Halo2Tang/RM-UNet.
引用
收藏
页码:8427 / 8443
页数:17
相关论文
共 50 条
  • [41] MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
    Khalaf, Muna
    Dhannoon, Ban N.
    BAGHDAD SCIENCE JOURNAL, 2022, 19 (06) : 1603 - 1611
  • [42] LATrans-Unet: Improving CNN-Transformer with Location Adaptive for Medical Image Segmentation
    Lin, Qiqin
    Yao, Junfeng
    Hong, Qingqi
    Cao, Xianpeng
    Zhou, Rongzhou
    Xie, Weixing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 223 - 234
  • [43] AFC-Unet: Attention-fused full-scale CNN-transformer unet for medical image segmentation
    Meng, Wenjie
    Liu, Shujun
    Wang, Huajun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [44] H2MaT-Unet:Hierarchical hybrid multi-axis transformer based Unet for medical image segmentation
    Ju Z.
    Zhou Z.
    Qi Z.
    Yi C.
    Computers in Biology and Medicine, 2024, 174
  • [45] VIG-UNET: VISION GRAPH NEURAL NETWORKS FOR MEDICAL IMAGE SEGMENTATION
    Jiang, Juntao
    Chen, Xiyu
    Tian, Guanzhong
    Liu, Yong
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [46] DSTUNET: UNET WITH EFFICIENT DENSE SWIN TRANSFORMER PATHWAY FOR MEDICAL IMAGE SEGMENTATION
    Cai, Zhuotong
    Xin, Jingmin
    Shi, Peiwen
    Wu, Jiayi
    Zheng, Nanning
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [47] A Medical Image Segmentation Method Based on Improved UNet 3+ Network
    Xu, Yang
    Hou, Shike
    Wang, Xiangyu
    Li, Duo
    Lu, Lu
    DIAGNOSTICS, 2023, 13 (03)
  • [48] UCSwin-UNet model for medical image segmentation based on cardiac haemangioma
    Shi, Jian-Ting
    Qu, Gui-Xu
    Li, Zhi-Jun
    IET IMAGE PROCESSING, 2024, 18 (12) : 3302 - 3315
  • [49] TAC-UNet: transformer-assisted convolutional neural network for medical image segmentation
    He, Jingliu
    Ma, Yuqi
    Yang, Mingyue
    Yang, Wensong
    Wu, Chunming
    Chen, Shanxiong
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (12) : 8824 - 8839
  • [50] Swin-HAUnet: A Swin-Hierarchical Attention Unet For Enhanced Medical Image Segmentation
    Chen, Jiarong
    Zhang, Xuyang
    Li, Rongwen
    Zhou, Peng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XIV, 2025, 15044 : 371 - 385