RM-UNet: UNet-like Mamba with rotational SSM module for medical image segmentation

被引:3
作者
Tang, Hao [1 ]
Huang, Guoheng [1 ]
Cheng, Lianglun [1 ]
Yuan, Xiaochen [2 ]
Tao, Qi [3 ]
Chen, Xuhang [4 ]
Zhong, Guo [5 ]
Yang, Xiaohui [6 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[3] Guangdong Technion Israel Inst Technol, Dept Mech Engn Robot, Shantou 515063, Peoples R China
[4] Huizhou Univ, Sch Comp Sci & Engn, Huizhou 516007, Peoples R China
[5] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou 510006, Peoples R China
[6] Sun Yat sen Univ, Affiliated Hosp 3, Dept Gynecol, Guangzhou, Peoples R China
关键词
U-Net; State Space Models; Medical image segmentation; Mamba; LSIL; U-NET ARCHITECTURE; TRANSFORMER;
D O I
10.1007/s11760-024-03484-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate segmentation of tissues and lesions is crucial for disease diagnosis, treatment planning, and surgical navigation. Yet, the complexity of medical images presents significant challenges for traditional Convolutional Neural Networks and Transformer models due to their limited receptive fields or high computational complexity. State Space Models (SSMs) have recently shown notable vision performance, particularly Mamba and its variants. However, their feature extraction methods may not be sufficiently effective and retain some redundant structures, leaving room for parameter reduction. In response to these challenges, we introduce a methodology called Rotational Mamba-UNet, characterized by Residual Visual State Space (ResVSS) block and Rotational SSM Module. The ResVSS block is devised to mitigate network degradation caused by the diminishing efficacy of information transfer from shallower to deeper layers. Meanwhile, the Rotational SSM Module is devised to tackle the challenges associated with channel feature extraction within State Space Models. Finally, we propose a weighted multi-level loss function, which fully leverages the outputs of the decoder's three stages for supervision. We conducted experiments on ISIC17, ISIC18, CVC-300, Kvasir-SEG, CVC-ColonDB, Kvasir-Instrument datasets, and Low-grade Squamous Intraepithelial Lesion datasets provided by The Third Affiliated Hospital of Sun Yat-sen University, demonstrating the superior segmentation performance of our proposed RM-UNet. Additionally, compared to the previous VM-UNet, our model achieves a one-third reduction in parameters. Our code is available at https://github.com/Halo2Tang/RM-UNet.
引用
收藏
页码:8427 / 8443
页数:17
相关论文
共 50 条
  • [31] NAS-Unet: Neural Architecture Search for Medical Image Segmentation
    Weng, Yu
    Zhou, Tianbao
    Li, Yujie
    Qiu, Xiaoyu
    IEEE ACCESS, 2019, 7 : 44247 - 44257
  • [32] MLCA-UNet: medical image segmentation networks with multiscale linear and convolutional attention
    Zhou, Jinzhi
    He, Haoyang
    Ma, Guangcen
    Li, Saifeng
    Zhang, Guopeng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (06)
  • [33] MD-UNet: a medical image segmentation network based on mixed depthwise convolution
    Liu, Yun
    Yao, Shuanglong
    Wang, Xing
    Chen, Ji
    Li, Xiaole
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (04) : 1201 - 1212
  • [34] LIT-Unet: a lightweight and effective model for medical image segmentation
    Wang, Ru
    Kou, Qiqi
    Dou, Lina
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (04) : 878 - 887
  • [35] MD-UNet: a medical image segmentation network based on mixed depthwise convolution
    Yun Liu
    Shuanglong Yao
    Xing Wang
    Ji Chen
    Xiaole Li
    Medical & Biological Engineering & Computing, 2024, 62 : 1201 - 1212
  • [36] RFE-UNet: Remote Feature Exploration with Local Learning for Medical Image Segmentation
    Zhong, Xiuxian
    Xu, Lianghui
    Li, Chaoqun
    An, Lijing
    Wang, Liejun
    SENSORS, 2023, 23 (13)
  • [37] NFMPAtt-Unet: Neighborhood Fuzzy C-means Multi-scale Pyramid Hybrid Attention Unet for medical image segmentation
    Zhao, Xinpeng
    Xu, Weihua
    NEURAL NETWORKS, 2024, 178
  • [38] Segmentation of brain tumor MRI image based on improved attention module Unet network
    Lei Zhang
    Chaofeng Lan
    Lirong Fu
    Xiuhuan Mao
    Meng Zhang
    Signal, Image and Video Processing, 2023, 17 : 2277 - 2285
  • [39] Segmentation of brain tumor MRI image based on improved attention module Unet network
    Zhang, Lei
    Lan, Chaofeng
    Fu, Lirong
    Mao, Xiuhuan
    Zhang, Meng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2277 - 2285
  • [40] A Comprehensive Exploration of L-UNet Approach: Revolutionizing Medical Image Segmentation
    Alafer, Feras
    Hameed Siddiqi, Muhammad
    Sheraz Khan, Muhammad
    Ahmad, Irshad
    Alhujaili, Sultan
    Alrowaili, Ziyad
    Saad Alshabibi, Abdulaziz
    IEEE ACCESS, 2024, 12 : 140769 - 140791