EEG connectivity and network analyses predict outcome in patients with disorders of consciousness - A systematic review and meta-analysis

被引:0
|
作者
Szirmai, Danuta [1 ]
Zabihi, Arashk [1 ]
Koi, Tamas [1 ,3 ]
Hegyi, Peter [1 ,5 ,6 ]
Wenning, Alexander Schulze [1 ]
Engh, Marie Anne [1 ]
Molnar, Zsolt [7 ,8 ]
Csukly, Gabor [9 ]
Horvath, Andras Attila [1 ,2 ,4 ]
机构
[1] Semmelweis Univ, Ctr Translat Med, Bar Utca 22, H-1085 Budapest, Hungary
[2] Natl Inst Mental Hlth, Neurocognit Res Ctr, Neurosurg, Neurol, Amerika Ut 57, H-1145 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Math Inst, Dept Stochast, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[4] Semmelweis Univ, Dept Anat Histol & Embryol, Ullo Ut 26, H-1085 Budapest, Hungary
[5] Semmelweis Univ, Inst Pancreat Dis, Tomo U 25-29, H-1083 Budapest, Hungary
[6] Univ Pecs, Inst Translat Med, Med Sch, Sziget Ut 12, H-7624 Pecs, Hungary
[7] Semmelweis Univ, Dept Anesthesiol & Intens Therapy, Ullo Ut 78, H-1082 Budapest, Hungary
[8] Poznan Univ Med Sci, Dept Anesthesiol & Intens Therapy, 49 Przybyszewskiego St, PL-60355 Poznan, Poland
[9] Semmelweis Univ, Dept Psychiat & Psychotherapy, Balassa U 6, H-1083 Budapest, Hungary
关键词
DOC; Disorders of consciousness; Outcome prediction; EEG; CRS-R; Behavioural scale; PERSISTENT VEGETATIVE STATE;
D O I
10.1016/j.heliyon.2024.e31277
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Outcome prediction in prolonged disorders of consciousness (DOC) remains challenging. This can result in either inappropriate withdrawal of treatment or unnecessary prolongation of treatment. Electroencephalography (EEG) is a cheap, portable, and non-invasive device with various opportunities for complex signal analysis. Computational EEG measures, such as EEG connectivity and network metrics, might be ideal candidates for the investigation of DOC, but their capacity in prognostication is still undisclosed. We conducted a meta-analysis aiming to compare the prognostic power of the widely used clinical scale, Coma Recovery Scale-Revised - CRS-R and EEG connectivity and network metrics. We found that the prognostic power of the CRS-R scale was moderate (AUC: 0.67 (0.60-0.75)), but EEG connectivity and network metrics predicted outcome with significantly (p = 0.0071) higher accuracy (AUC:0.78 (0.70-0.86)). We also estimated the prognostic capacity of EEG spectral power, which was not significantly (p = 0.3943) inferior to that of the EEG connectivity and graph-theory measures (AUC:0.75 (0.70-0.80)). Multivariate automated outcome prediction tools seemed to outperform clinical and EEG markers.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Post-Cardiac arrest outcome prediction using machine learning: A systematic review and meta-analysis
    Zobeiri, Amirhosein
    Rezaee, Alireza
    Hajati, Farshid
    Argha, Ahmadreza
    Alinejad-Rokny, Hamid
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 193
  • [42] EEG-based Brain-Computer Interfaces for people with Disorders of Consciousness: Features and applications. A systematic review
    Galiotta, Valentina
    Quattrociocchi, Ilaria
    D'Ippolito, Mariagrazia
    Schettini, Francesca
    Arico, Pietro
    Sdoia, Stefano
    Formisano, Rita
    Cincotti, Febo
    Mattia, Donatella
    Riccio, Angela
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [43] Assessing residual motor function in patients with disorders of consciousness by brain network properties of task-state EEG
    Zhang, Lipeng
    Zhang, Rui
    Guo, Yongkun
    Zhao, Dexiao
    Li, Shizheng
    Chen, Mingming
    Shi, Li
    Yao, Dezhong
    Gao, Jinfeng
    Wang, Xinjun
    Hu, Yuxia
    COGNITIVE NEURODYNAMICS, 2022, 16 (03) : 609 - 620
  • [44] Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis
    Van Doren, Jessica
    Arns, Martijn
    Heinrich, Hartmut
    Vollebregt, Madelon A.
    Strehl, Ute
    Loo, Sandra K.
    EUROPEAN CHILD & ADOLESCENT PSYCHIATRY, 2019, 28 (03) : 293 - 305
  • [45] Polysomnographic Characteristics of Sleep in Stroke: A Systematic Review and Meta-Analysis
    Baglioni, Chiara
    Nissen, Christoph
    Schweinoch, Adrian
    Riemann, Dieter
    Spiegelhalder, Kai
    Berger, Mathias
    Weiller, Cornelius
    Sterr, Annette
    PLOS ONE, 2016, 11 (03):
  • [46] Polysomnography in seasonal affective disorder: A systematic review and meta-analysis
    Bertrand, Lea
    d'ortho, Marie-Pia
    Reynaud, Eve
    Lejoyeux, Michel
    Bourgin, Patrice
    Geoffroy, Pierre A.
    JOURNAL OF AFFECTIVE DISORDERS, 2021, 292 : 405 - 415
  • [47] Assessing residual motor function in patients with disorders of consciousness by brain network properties of task-state EEG
    Lipeng Zhang
    Rui Zhang
    Yongkun Guo
    Dexiao Zhao
    Shizheng Li
    Mingming Chen
    Li Shi
    Dezhong Yao
    Jinfeng Gao
    Xinjun Wang
    Yuxia Hu
    Cognitive Neurodynamics, 2022, 16 : 609 - 620
  • [48] Safety and efficacy of thrombolysis in telestroke: A systematic review and meta-analysis
    Kepplinger, Jessica
    Barlinn, Kristian
    Deckert, Stefanie
    Scheibe, Madlen
    Bodechtel, Ulf
    Schmitt, Jochen
    NEUROLOGY, 2016, 87 (13) : 1344 - 1351
  • [49] A Meta-analysis of Predicting Disorders of Consciousness After Traumatic Brain Injury by Machine Learning Models
    Zhu, Xi
    Gao, Li
    Luo, Jun
    ALPHA PSYCHIATRY, 2024, 25 (03):
  • [50] The efficacy of mindfulness-based interventions for patients with COPD: a systematic review and meta-analysis protocol
    Tian, Lingyun
    Zhang, Ying
    Li, Li
    Wu, Ying
    Li, Yinglan
    BMJ OPEN, 2019, 9 (05):