Genome-wide identification and expression analysis of phytochrome-interacting factor genes during abiotic stress responses and secondary metabolism in the tea plant

被引:0
|
作者
Sun, Shuai [1 ,2 ,3 ]
Wu, Peichen [3 ]
Gao, Fuquan [3 ]
Yu, Xiaomin [3 ]
Liu, Ying [3 ]
Zheng, Chao [3 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Hort, Fuzhou 350002, Fujian, Peoples R China
[2] Fujian Agr & Forestry Univ, Fujian Prov Key Lab Haixia Appl Plant Syst Biol, Fuzhou 350002, Fujian, Peoples R China
[3] Fujian Agr & Forestry Univ, Haixia Inst Sci & Technol, Hort Plant Biol & Metabol Ctr, 15 Shangxiadian Rd, Fuzhou 350002, Fujian, Peoples R China
关键词
Camellia sinensis; Phytochrome-interacting factors; Abiotic stress; Secondary metabolism; TRANSCRIPTION FACTOR; FREEZING TOLERANCE; LIGHT; INTEGRATORS; REGULATOR; DIVERSITY; GERMPLASM; PIFS;
D O I
10.1016/j.plaphy.2024.108988
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phytochrome-interacting factors (PIFs) are pivotal transcriptional regulators controlling photomorphogenesis, environmental responses, and development in plants. However, their specific roles in coordinating adaptation towards abiotic stress and metabolism remain underexplored in tea plants. Here, we identified seven PIF members from four distinct clades (PIF1, PIF3, PIF7, and PIF8). Promoter analysis implicated CsPIFs in integrating light, stress, hormone, and circadian signals. Most CsPIFs exhibited rapid increase in expression under shading, especially CsPIF7b/8a, which displayed significant changes in long-term shading condition. Under drought/salt stress, CsPIF3b emerged as a potential positive regulator. CsPIF3a was induced by low temperature and co-expressed with CsCBF1/3 and CsDREB2A cold response factors. Dual-luciferase assays confirmed that act as negative regulator of the CBF pathway. Expression profiling across 11 tea cultivars associated specific CsPIFs with chlorophyll biosynthesis and accumulation of anthocyanins, flavonols, and other metabolites. In summary, this study highlights the significance of CsPIFs as central coordinators in managing intricate transcriptional reactions to simultaneous abiotic stresses and metabolic adjustments in tea plants. This insight informs future strategies for enhancing this economically crucial crop through crop improvement initiatives.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses
    Cheng, Haomiao
    Shao, Zhanru
    Lu, Chang
    Duan, Delin
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [42] Genome-wide identification and expression analysis of the trihelix transcription factor family in sesame (Sesamum indicum L.) under abiotic stress
    Zhao, Yunyan
    Liang, Junchao
    Wang, Zhiqi
    Yan, Tingxian
    Yan, Xiaowen
    Wei, Wenliang
    Le, Meiwang
    Sun, Jian
    MOLECULAR BIOLOGY REPORTS, 2023, 50 (10) : 8281 - 8295
  • [43] The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses
    He, Peng
    Zhao, Peng
    Wang, Limin
    Zhang, Yuzhou
    Wang, Xiaosi
    Xiao, Hui
    Yu, Jianing
    Xiao, Guanghui
    BMC GENOMICS, 2017, 18
  • [44] Genome-wide identification, phylogenetic analysis, and expression profiles of trihelix transcription factor family genes in quinoa (Chenopodium quinoa Willd.) under abiotic stress conditions
    Li, Kuiyin
    Fan, Yue
    Zhou, Guangyi
    Liu, Xiaojuan
    Chen, Songshu
    Chang, Xiangcai
    Wu, Wenqiang
    Duan, Lili
    Yao, Maoxing
    Wang, Rui
    Wang, Zili
    Yang, Mingfang
    Ding, Yanqing
    Ren, Mingjian
    Fan, Yu
    Zhang, Liyi
    BMC GENOMICS, 2022, 23 (01)
  • [45] Genome-wide identification and expression analysis of aquaporin gene family related to abiotic stress in watermelon
    Zhou, Yong
    Tao, Junjie
    Ahammed, Golam Jalal
    Li, Jingwen
    Yang, Youxin
    GENOME, 2019, 62 (10) : 643 - 656
  • [46] Genome-Wide Identification and Expression Analysis of Hexokinase Gene Family Under Abiotic Stress in Tomato
    Li, Jing
    Yao, Xiong
    Zhang, Jianling
    Li, Maoyu
    Xie, Qiaoli
    Yang, Yingwu
    Chen, Guoping
    Zhang, Xianwei
    Hu, Zongli
    PLANTS-BASEL, 2025, 14 (03):
  • [47] Genome-wide identification and expression analysis of the CLC superfamily genes in tea plants (Camellia sinensis)
    Xing, Anqi
    Ma, Yuanchun
    Wu, Zichen
    Nong, Shouhua
    Zhu, Jiaojiao
    Sun, Hua
    Tao, Jing
    Wen, Bo
    Zhu, Xujun
    Fang, Wanping
    Li, Xiaocheng
    Wang, Yuhua
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2020, 20 (04) : 497 - 508
  • [48] Genome-Wide Analysis of Nuclear factor-YC Genes in the Tea Plant (Camellia sinensis) and Functional Identification of CsNF-YC6
    Chen, Shengxiang
    Wei, Xujiao
    Hu, Xiaoli
    Zhang, Peng
    Chang, Kailin
    Zhang, Dongyang
    Chen, Wei
    Tang, Dandan
    Tang, Qian
    Li, Pinwu
    Tan, Liqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (02)
  • [49] Genome-Wide Identification and Expression Analysis of UBiA Family Genes Associated with Abiotic Stress in Sunflowers (Helianthus annuus L.)
    Sun, Mingzhe
    Cai, Maohong
    Zeng, Qinzong
    Han, Yuliang
    Zhang, Siqi
    Wang, Yingwei
    Xie, Qinyu
    Chen, Youheng
    Zeng, Youling
    Chen, Tao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [50] Genome Identification of the Tea Plant (Camellia sinensis) ASMT Gene Family and Its Expression Analysis under Abiotic Stress
    Xu, Fangfang
    Liu, Wenxiang
    Wang, Hui
    Alam, Pravej
    Zheng, Wei
    Faizan, Mohammad
    GENES, 2023, 14 (02)