In situ Blending For Co-Deposition of Electron Transport and Perovskite Layers Enables Over 24% Efficiency Stable Inverted Solar Cells

被引:3
|
作者
Wang, Wanhai [1 ,2 ]
Li, Xiaofeng [2 ]
Huang, Pengyu [1 ]
Yang, Li [2 ,3 ]
Gao, Liang [1 ]
Jiang, Yonghe [1 ]
Hu, Jianfei [2 ]
Gao, Yinhu [2 ]
Che, Yuliang [2 ]
Deng, Jidong [2 ]
Zhang, Jinbao [2 ,3 ]
Tang, Weihua [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Inst Flexible Elect IFE, Coll Mat, Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Mat, Fujian Key Lab Adv Mat, Xiamen Key Lab Elect Ceram Mat & Devices, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
co-deposition; electron transport layer; in situ blending; perovskite solar cell; GENERATION;
D O I
10.1002/adma.202407349
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Simplifying the manufacturing processes of multilayered high-performance perovskite solar cells (PSCs) is yet of vital importance for their cost-effective production. Herein, an in situ blending strategy is presented for co-deposition of electron transport layer (ETL) and perovskite absorber by incorporating (3-(7-butyl-1,3,6,8-tetraoxo-3,6,7,8-tetrahydrobenzo- [lmn][3,8]phenanthrolin-2(1H)-yl)propyl)phosphonic acid (NDP) into the perovskite precursor solutions. The phosphonic acid-like anchoring group coupled with its large molecular size drives the migration of NDP toward indium tin oxide (ITO) surface to form a distinct ETL during perovskite film forming. This strategy circumvents the critical wetting issue and simultaneously improves the interfacial charge collection efficiencies. Consequently, n-i-p PSCs based on in situ blended NDP achieve a champion power conversion efficiency (PCE) of 24.01%, which is one of the highest values for PSCs using organic ETLs. This performance is notably higher than that of ETL-free (21.19%) and independently spin-coated (21.42%) counterparts. More encouragingly, the in situ blending strategy dramatically enhances the device stability under harsh conditions by retaining over 90% of initial efficiencies after 250 h in 100 degrees C or 65% humidity storage. Moreover, this strategy is universally adaptable to various perovskite compositions, device architectures, and electron transport materials (ETMs), showing great potential for applications in diverse optoelectronic devices. Electron transport layer (ETL) materials have been rationally designed for in situ blending to co-deposit ETL and light-absorbing layers simultaneously in inverted perovskite solar cells. Such a strategy significantly improves the qualities of perovskite growth and buried interface to improve charge transport/collection. A record high power conversion efficiency over 24% is achieved for organic ETLs based devices. image
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Steric hindrance driven passivating cations for stable perovskite solar cells with an efficiency over 24%
    Rakstys, Kasparas
    Xia, Jianxing
    Zhang, Yi
    Siksnelyte, Kotryna
    Slonopas, Andre
    Dyson, Paul J.
    Getautis, Vytautas
    Nazeeruddin, Mohammad Khaja
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (03) : 1422 - 1428
  • [32] Interfacial Engineering of a PCBM/AZO Electron Transport Bilayer for Efficient and Stable Inverted Perovskite Solar Cells
    Ali, Usman
    Javed, Sofia
    Qureshi, Akbar Ali
    Akram, Muhammad Aftab
    CHEMNANOMAT, 2023, 9 (09)
  • [33] Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells
    Song, Seulki
    Hill, Rebecca
    Choi, Kyoungwon
    Wojciechowski, Konrad
    Barlow, Stephen
    Leisen, Johannes
    Snaith, Henry J.
    Marder, Seth R.
    Park, Taiho
    NANO ENERGY, 2018, 49 : 324 - 332
  • [34] Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%
    Mo, Yanping
    Wang, Chao
    Zheng, Xuntian
    Zhou, Peng
    Li, Jing
    Yu, Xinxin
    Yang, Kaizhong
    Deng, Xinyu
    Park, Hyesung
    Huang, Fuzhi
    Cheng, Yi-Bing
    INTERDISCIPLINARY MATERIALS, 2022, 1 (02): : 309 - 315
  • [35] Hole-Transport Management Enables 23%-Efficient and Stable Inverted Perovskite Solar Cells with 84% Fill Factor
    Liu, Liming
    Ma, Yajie
    Wang, Yousheng
    Ma, Qiaoyan
    Wang, Zixuan
    Yang, Zigan
    Wan, Meixiu
    Mahmoudi, Tahmineh
    Hahn, Yoon-Bong
    Mai, Yaohua
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [36] Hole-Transport Management Enables 23%-Efficient and Stable Inverted Perovskite Solar Cells with 84% Fill Factor
    Liming Liu
    Yajie Ma
    Yousheng Wang
    Qiaoyan Ma
    Zixuan Wang
    Zigan Yang
    Meixiu Wan
    Tahmineh Mahmoudi
    Yoon-Bong Hahn
    Yaohua Mai
    Nano-Micro Letters, 2023, 15 (08) : 161 - 173
  • [37] Hole-Transport Management Enables 23%-Efficient and Stable Inverted Perovskite Solar Cells with 84% Fill Factor
    Liming Liu
    Yajie Ma
    Yousheng Wang
    Qiaoyan Ma
    Zixuan Wang
    Zigan Yang
    Meixiu Wan
    Tahmineh Mahmoudi
    Yoon-Bong Hahn
    Yaohua Mai
    Nano-Micro Letters, 2023, 15
  • [38] Ultrasonic spray deposition of TiO2 electron transport layers for reproducible and high efficiency hybrid perovskite solar cells
    Sun, Jingsong
    Pascoe, Alexander R.
    Meyer, Steffen
    Wu, Qijie
    Della Gaspera, Enrico
    Raga, Sonia R.
    Zhang, Tian
    Nattestad, Andrew
    Bach, Udo
    Cheng, Yi-Bing
    Jasieniak, Jacek J.
    SOLAR ENERGY, 2019, 188 : 697 - 705
  • [39] Recent review on electron transport layers in perovskite solar cells
    Foo, Shini
    Thambidurai, Mariyappan
    Kumar, Ponnusamy Senthil
    Yuvakkumar, Rathinam
    Huang, Yizhong
    Cuong Dang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 21441 - 21451
  • [40] Influence of Hole Transport Layers/Perovskite Interfaces on the Hysteresis Behavior of Inverted Perovskite Solar Cells
    Liu, Jie
    Yin, Xingtian
    Guo, Yuxiao
    Que, Meidan
    Chen, Jing
    Chen, Zhong
    Que, Wenxiu
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (07): : 6391 - 6399