Wind speed analysis using Weibull and lower upper truncated Weibull distribution in Bangladesh

被引:7
作者
Jahan, Saima [1 ,2 ]
Masseran, Nurulkamal [1 ]
Zin, W. Z. Wan [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor, Malaysia
[2] East West Univ, Dept Math & Phys Sci, Dhaka, Bangladesh
关键词
Wind speed; Weibull distribution; Lower-upper-truncated Weibull distribution; Maximum likelihood method; MAXIMUM-ENTROPY PRINCIPLE; PROBABILITY-DISTRIBUTION; ENERGY; REGION;
D O I
10.1016/j.egyr.2024.05.029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind speed (WS) is the most important factor for modeling wind energy. WSs below a lower truncation point are usually not able to generate energy. Conversely, WSs higher than the upper truncation point may damage wind turbines. Moreover, the presence of missing values in WS data may hamper the analysis results of WS estimates. This study used the mean imputation and linear regression methods for estimating missing values and aimed to analyze the characteristics of WS data in Bangladesh using the Weibull distribution and the lower -upper-trun- cated Weibull distribution (TWD). The maximum likelihood method was used to determine the Weibull and truncated Weibull parameters. Our data revealed that TWD showed better performance than WD in terms of root mean square error (RMSE) and KolmogorovSmirnov (KS) in WS distribution estimation. Lower -upper-TWD can be used in the assessment of wind energy potential.
引用
收藏
页码:5456 / 5465
页数:10
相关论文
共 44 条
[21]  
Jacobson M., 2018, Assessing the Wind Energy Potential in Bangladesh Enabling Wind Energy Development with Data Products Technical Report
[22]   Comparison of missing value estimation techniques in rainfall data of Bangladesh [J].
Jahan, Farzana ;
Sinha, Narayan Chandra ;
Rahman, Md. Mahfuzur ;
Rahman, Md. Morshadur ;
Mondal, Md. Sanaul Haque ;
Islam, M. Ataharul .
THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 136 (3-4) :1115-1131
[23]   Wind speed distribution selection - A review of recent development and progress [J].
Jung, Christopher ;
Schindler, Dirk .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 114
[24]   Analysis of wind speed distributions: Wind distribution function derived from minimum cross entropy principles as better alternative to Weibull function [J].
Kantar, Yeliz Mert ;
Usta, Ilhan .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (05) :962-973
[25]   Analysis of the upper-truncated Weibull distribution for wind speed [J].
Kantar, Yeliz Mert ;
Usta, Ilhan .
ENERGY CONVERSION AND MANAGEMENT, 2015, 96 :81-88
[26]  
Karim MA, 2021, INT ENERGY J, V21, P33
[27]   Multi-decadal variability in a centennial reconstruction of daily wind [J].
Kirchner-Bossi, N. ;
Prieto, L. ;
Garcia-Herrera, R. ;
Carro-Calvo, L. ;
Salcedo-Sanz, S. .
APPLIED ENERGY, 2013, 105 :30-46
[28]   MEP-type distribution function: a better alternative to Weibull function for wind speed distributions [J].
Li, MS ;
Li, XG .
RENEWABLE ENERGY, 2005, 30 (08) :1221-1240
[29]   A methodology for treating missing data applied to daily rainfall data in the Candelaro River Basin (Italy) [J].
Lo Presti, Rossella ;
Barca, Emanuele ;
Passarella, Giuseppe .
ENVIRONMENTAL MONITORING AND ASSESSMENT, 2010, 160 (1-4) :1-22
[30]   Evaluating the wind speed persistence for several wind stations in Peninsular Malaysia [J].
Masseran, N. ;
Razali, A. M. ;
Ibrahim, K. ;
Zin, W. Z. Wan .
ENERGY, 2012, 37 (01) :649-656