Wind speed analysis using Weibull and lower upper truncated Weibull distribution in Bangladesh

被引:7
作者
Jahan, Saima [1 ,2 ]
Masseran, Nurulkamal [1 ]
Zin, W. Z. Wan [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor, Malaysia
[2] East West Univ, Dept Math & Phys Sci, Dhaka, Bangladesh
关键词
Wind speed; Weibull distribution; Lower-upper-truncated Weibull distribution; Maximum likelihood method; MAXIMUM-ENTROPY PRINCIPLE; PROBABILITY-DISTRIBUTION; ENERGY; REGION;
D O I
10.1016/j.egyr.2024.05.029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind speed (WS) is the most important factor for modeling wind energy. WSs below a lower truncation point are usually not able to generate energy. Conversely, WSs higher than the upper truncation point may damage wind turbines. Moreover, the presence of missing values in WS data may hamper the analysis results of WS estimates. This study used the mean imputation and linear regression methods for estimating missing values and aimed to analyze the characteristics of WS data in Bangladesh using the Weibull distribution and the lower -upper-trun- cated Weibull distribution (TWD). The maximum likelihood method was used to determine the Weibull and truncated Weibull parameters. Our data revealed that TWD showed better performance than WD in terms of root mean square error (RMSE) and KolmogorovSmirnov (KS) in WS distribution estimation. Lower -upper-TWD can be used in the assessment of wind energy potential.
引用
收藏
页码:5456 / 5465
页数:10
相关论文
共 44 条
[11]  
Bauer E, 1996, INT J CLIMATOL, V16, P1087, DOI 10.1002/(SICI)1097-0088(199610)16:10<1087::AID-JOC68>3.0.CO
[12]  
2-#
[13]   Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions [J].
Carta, J. A. ;
Ramirez, P. .
RENEWABLE ENERGY, 2007, 32 (03) :518-531
[14]   Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago [J].
Carta, Jose Antonio ;
Ramirez, Penelope .
ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (01) :281-291
[15]  
CHARERNKAVANICH D, 1984, COMMUN STAT-THEOR M, V13, P843
[16]   Present energy scenario and future energy mix of Bangladesh [J].
Das, N. K. ;
Chakrabartty, J. ;
Dey, Mrinmoy ;
Sen Gupta, A. K. ;
Matin, M. A. .
ENERGY STRATEGY REVIEWS, 2020, 32
[17]   Evaluation of statistical methods for infilling missing values in high-resolution soil moisture data [J].
Dumedah, Gift ;
Coulibaly, Paulin .
JOURNAL OF HYDROLOGY, 2011, 400 (1-2) :95-102
[18]   Wind energy potential assessment in Naxos Island, Greece [J].
Fyrippis, Ioannis ;
Axaopoulos, Petros J. ;
Panayiotou, Gregoris .
APPLIED ENERGY, 2010, 87 (02) :577-586
[19]  
Haque M., 2020, Res.Gate. Achiev. Sustain. Dev. goal7: Emerg. Chall. Bangladesh
[20]  
Ibrahim M. Zamri, 2015, Spatial Analysis of Wind Potential for Malaysia