Wind speed analysis using Weibull and lower upper truncated Weibull distribution in Bangladesh

被引:7
作者
Jahan, Saima [1 ,2 ]
Masseran, Nurulkamal [1 ]
Zin, W. Z. Wan [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor, Malaysia
[2] East West Univ, Dept Math & Phys Sci, Dhaka, Bangladesh
关键词
Wind speed; Weibull distribution; Lower-upper-truncated Weibull distribution; Maximum likelihood method; MAXIMUM-ENTROPY PRINCIPLE; PROBABILITY-DISTRIBUTION; ENERGY; REGION;
D O I
10.1016/j.egyr.2024.05.029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind speed (WS) is the most important factor for modeling wind energy. WSs below a lower truncation point are usually not able to generate energy. Conversely, WSs higher than the upper truncation point may damage wind turbines. Moreover, the presence of missing values in WS data may hamper the analysis results of WS estimates. This study used the mean imputation and linear regression methods for estimating missing values and aimed to analyze the characteristics of WS data in Bangladesh using the Weibull distribution and the lower -upper-trun- cated Weibull distribution (TWD). The maximum likelihood method was used to determine the Weibull and truncated Weibull parameters. Our data revealed that TWD showed better performance than WD in terms of root mean square error (RMSE) and KolmogorovSmirnov (KS) in WS distribution estimation. Lower -upper-TWD can be used in the assessment of wind energy potential.
引用
收藏
页码:5456 / 5465
页数:10
相关论文
共 44 条
[1]   Wind Characteristics Analyses and Determination of Appropriate Wind Turbine for AmasraBlack Sea Region, Turkey [J].
Akdag, S. A. ;
Guler, O. .
INTERNATIONAL JOURNAL OF GREEN ENERGY, 2010, 7 (04) :422-433
[2]   Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean [J].
Akdag, S. A. ;
Bagiorgas, H. S. ;
Mihalakakou, G. .
APPLIED ENERGY, 2010, 87 (08) :2566-2573
[3]   Estimation of wind energy potential using finite mixture distribution models [J].
Akpinar, Sinan ;
Akpinar, Ebru Kavak .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (04) :877-884
[4]   Theoretical derivation of wind power probability distribution function and applications [J].
Altunkaynak, Abdusselam ;
Erdik, Tarkan ;
Dabanli, Ismail ;
Sen, Zekai .
APPLIED ENERGY, 2012, 92 :809-814
[5]  
Amin M.T., 2015, Int. J. Adv. Renew. Energy Res. Md. Tanjin Amin, V2
[6]  
[Anonymous], 2024, How Do Wind Turbines Survive Severe Storms?
[7]   Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey [J].
Arslan, Oguz .
ENERGY, 2010, 35 (01) :120-131
[8]   Analysis of wind energy prospect for power generation by three Weibull distribution methods [J].
Azad, A. K. ;
Rasul, M. G. ;
Islam, Rubayat ;
Shishir, Imrul R. .
CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 :722-727
[9]   Prospects and Necessity of Wind Energy in Bangladesh for the Forthcoming Future [J].
Babu M.T. ;
Nei H. ;
Kowser M.A. .
Journal of The Institution of Engineers (India): Series C, 2022, 103 (04) :913-929
[10]  
Basheer O.S., 2015, Mod. Appl. Sci., V9