PRIMITI: A computational approach for accurate prediction of miRNA-target mRNA interaction

被引:2
作者
Uthayopas, Korawich [1 ,2 ]
de Sa, Alex G. C. [1 ,2 ,3 ]
Alavi, Azadeh [4 ]
Pires, Douglas E. V. [1 ,2 ,5 ]
Ascher, David B. [1 ,3 ]
机构
[1] Univ Queensland, Australian Ctr Ecogenom, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[2] Baker Heart & Diabet Inst, Computat Biol & Clin Informat, Melbourne, Vic 3004, Australia
[3] Univ Melbourne, Baker Dept Cardiometab Hlth, Parkville, Vic 3010, Australia
[4] RMIT Univ, Sch Computat Technol, Melbourne, Vic 3000, Australia
[5] Univ Melbourne, Sch Comp & Informat Syst, Parkville, Vic 3052, Australia
基金
英国医学研究理事会;
关键词
MicroRNAs; MiRNA-target interaction prediction; MiRNA-mediated repression; Machine learning; EXtreme Gradient Boosting (XGBoost); MICRORNA BINDING-SITES; IDENTIFICATION;
D O I
10.1016/j.csbj.2024.06.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Current medical research has been demonstrating the roles of miRNAs in a variety of cellular mechanisms, lending credence to the association between miRNA dysregulation and multiple diseases. Understanding the mechanisms of miRNA is critical for developing effective diagnostic and therapeutic strategies. miRNA-mRNA interactions emerge as the most important mechanism to be understood despite their experimental validation constraints. Accordingly, several computational models have been developed to predict miRNA-mRNA interactions, albeit presenting limited predictive capabilities, poor characterisation of miRNA-mRNA interactions, and low usability. To address these drawbacks, we developed PRIMITI, a PRedictive model for the Identification of novel miRNA-Target mRNA Interactions. PRIMITI is a novel machine learning model that utilises CLIP-seq and expression data to characterise functional target sites in 3'-untranslated regions (3'-UTRs) and predict miRNAtarget mRNA repression activity. The model was trained using a reliable negative sample selection approach and the robust extreme gradient boosting (XGBoost) model, which was coupled with newly introduced features, including sequence and genetic variation information. PRIMITI achieved an area under the receiver operating characteristic (ROC) curve (AUC) up to 0.96 for a prediction of functional miRNA-target site binding and 0.96 for a prediction of miRNA-target mRNA repression activity on cross-validation and an independent blind test. Additionally, the model outperformed state-of-the-art methods in recovering miRNA-target repressions in an unseen microarray dataset and in a collection of validated miRNA-mRNA interactions, highlighting its utility for preliminary screening. PRIMITI is available on a reliable, scalable, and user-friendly web server at https://biosig. lab.uq.edu.au/primiti.
引用
收藏
页码:3030 / 3039
页数:10
相关论文
共 54 条
[21]   Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding [J].
Helwak, Aleksandra ;
Kudla, Grzegorz ;
Dudnakova, Tatiana ;
Tollervey, David .
CELL, 2013, 153 (03) :654-665
[22]   Genome-wide association studies for common diseases and complex traits [J].
Hirschhorn, JN ;
Daly, MJ .
NATURE REVIEWS GENETICS, 2005, 6 (02) :95-108
[23]   Non-coding RNAs: Classification, Biology and Functioning [J].
Hombach, Sonja ;
Kretz, Markus .
NON-CODING RNAS IN COLORECTAL CANCER, 2016, 937 :3-17
[24]   miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database [J].
Huang, Hsi-Yuan ;
Lin, Yang-Chi-Dung ;
Li, Jing ;
Huang, Kai-Yao ;
Shrestha, Sirjana ;
Hong, Hsiao-Chin ;
Tang, Yun ;
Chen, Yi-Gang ;
Jin, Chen-Nan ;
Yu, Yuan ;
Xu, Jia-Tong ;
Li, Yue-Ming ;
Cai, Xiao-Xuan ;
Zhou, Zhen-Yu ;
Chen, Xiao-Hang ;
Pei, Yuan-Yuan ;
Hu, Liang ;
Su, Jin-Jiang ;
Cui, Shi-Dong ;
Wang, Fei ;
Xie, Yue-Yang ;
Ding, Si-Yuan ;
Luo, Meng-Fan ;
Chou, Chih-Hung ;
Chang, Nai-Wen ;
Chen, Kai-Wen ;
Cheng, Yu-Hsiang ;
Wan, Xin-Hong ;
Hsu, Wen-Lian ;
Lee, Tzong-Yi ;
Wei, Feng-Xiang ;
Huang, Hsien-Da .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D148-D154
[25]   Human MicroRNA targets [J].
John, B ;
Enright, AJ ;
Aravin, A ;
Tuschl, T ;
Sander, C ;
Marks, DS .
PLOS BIOLOGY, 2004, 2 (11) :1862-1879
[26]   microRNA dysregulation in neurodegenerative diseases: A systematic review [J].
Juzwik, Camille A. ;
Drake, Sienna S. ;
Zhang, Yang ;
Paradis-Isler, Nicolas ;
Sylvester, Alexandra ;
Amar-Zifkin, Alexandre ;
Douglas, Chelsea ;
Morquette, Barbara ;
Moore, Craig S. ;
Fournier, Alyson E. .
PROGRESS IN NEUROBIOLOGY, 2019, 182
[27]   DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions [J].
Karagkouni, Dimitra ;
Paraskevopoulou, Maria D. ;
Chatzopoulos, Serafeim ;
Vlachos, Ioannis S. ;
Tastsoglou, Spyros ;
Kanellos, Ilias ;
Papadimitriou, Dimitris ;
Kavakiotis, Ioannis ;
Maniou, Sofia ;
Skoufos, Giorgos ;
Vergoulis, Thanasis ;
Dalamagas, Theodore ;
Hatzigeorgiou, Artemis G. .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D239-D245
[28]   The role of site accessibility in microRNA target recognition [J].
Kertesz, Michael ;
Iovino, Nicola ;
Unnerstall, Ulrich ;
Gaul, Ulrike ;
Segal, Eran .
NATURE GENETICS, 2007, 39 (10) :1278-1284
[29]   General rules for functional microRNA targeting [J].
Kim, Doyeon ;
Sung, You Me ;
Park, Jinman ;
Kim, Sukjun ;
Kim, Jongkyu ;
Park, Junhee ;
Ha, Haeok ;
Bae, Jung Yoon ;
Kim, SoHui ;
Baek, Daehyun .
NATURE GENETICS, 2016, 48 (12) :1517-1526
[30]   Cross-Linking Ligation and Sequencing of Hybrids (qCLASH) Reveals an Unpredicted miRNA Targetome in Melanoma Cells [J].
Kozar, Ines ;
Philippidou, Demetra ;
Margue, Christiane ;
Gay, Lauren A. ;
Renne, Rolf ;
Kreis, Stephanie .
CANCERS, 2021, 13 (05) :1-25