Two-Dimensional Nanostructure Anti-Reflection Enhancing Performance Silicon Solar Cells

被引:1
作者
Hasanah, Lilik [1 ]
Rahmawati, Yuni [1 ]
Wulandari, Chandra [2 ]
Mulyanti, Budi [3 ]
Pawinanto, Roer Eka [4 ]
Rusydi, Andrivo [5 ]
机构
[1] Univ Pendidikan Indonesia, Phys Study Program, Jl Dr Setiabudhi 229, Bandung 40154, Jawa Barat, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Engn Phys, Ganesha 10, Bandung 40132, Indonesia
[3] Univ Pendidikan Indonesia, Elect Engn Educ Study Program, Jl Dr Setiabudhi 229, Bandung 40154, Jawa Barat, Indonesia
[4] Univ Pendidikan Indonesia, Ind Automat & Robot Engn Educ Study Program, Jl Dr Setiabudhi 229, Bandung 40154, Jawa Barat, Indonesia
[5] Natl Univ Singapore, Dept Phys, Adv Res Initiat Correlated Electron Syst ARiCES, 2 Sci Dr 3, Singapore 117551, Singapore
关键词
Solar cells; Silicon; Nanostructure; PCE; FDTD; CHARGE; EFFICIENCY;
D O I
10.1007/s12633-024-03150-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Embedding an anti-reflection layer to reduce light reflection and suppress charge recombination is a key factor in increasing absorption and power conversion efficiency (PCE). Nanostructures are ideal as anti-reflection materials due to their typically superior optical properties. The shape and size of these nanostructures are important, as optimizing them can enhance and regulate light propagation, optical absorption, and light trapping. In this paper, absorption and electrical calculations were performed using Finite-Difference Time-Domain (FDTD) and CHARGE simulations. We demonstrate the effectiveness of optimizing the shape (nanodisk, sphere, and hemisphere), aspect ratio, diameter, lattice constant, and thickness of the nanostructure. These modifications significantly improved the performance of silicon solar cells, resulting in a PCE increase by 15.27%. The optimal PCE was obtained from modifying anti-reflection using a nanodisk structure with a diameter of 300 nm, a lattice constant of 600 nm, and a thickness of 187.5 nm. The high performance is demonstrated in both optical and electrical properties, with an absorption intensity of 97% and Jsc of 49.77 mA/cm2. These superior results suggest that the proposed TiO2 nanodisk-based silicon solar cells have great potential to enhance silicon solar cell performance.
引用
收藏
页码:6277 / 6286
页数:10
相关论文
共 50 条
[31]   Silicon nitride anti-reflection coating on the glass and transparent conductive oxide interface for thin film solar cells and modules [J].
Iwahashi, T. ;
Morishima, M. ;
Fujibayashi, T. ;
Yang, R. ;
Lin, J. ;
Matsunaga, D. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (14)
[32]   A Comparative Study of Silicon Heterojunction Solar Cells Utilizing a Double-Layer Anti-Reflection Coating on the Front Side [J].
Nur Aida, Maha ;
Khokhar, Muhammad Quddamah ;
Yousuf, Hasnain ;
Chu, Mengmeng ;
Bae, Junhan ;
Ur Rahman, Rafi ;
Jony, Jaljalalul Abedin ;
Park, Sangheon ;
Yi, Junsin .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2025, 222 (07)
[33]   Two-layer anti-reflection coatings with optimized sub-bandgap reflection for solar modules [J].
Slauch, Ian M. ;
Deceglie, Michael G. ;
Silverman, Timothy J. ;
Ferry, Vivian E. .
NEW CONCEPTS IN SOLAR AND THERMAL RADIATION CONVERSION AND RELIABILITY, 2018, 10759
[34]   Exploring low temperature-sputtered indium tin oxide (ITO) as an anti-reflection layer for silicon solar cells [J].
Ahir, Zon Fazlila Mohd ;
Rais, Ahmad Rujhan Mohd ;
Ludin, Norasikin Ahmad ;
Sopian, Kamaruzzaman ;
Sepeai, Suhaila .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (11)
[35]   Low temperature deposited boron nitride thin films for a robust anti-reflection coating of solar cells [J].
Alemua, Andenet ;
Freundlich, Alex ;
Badi, Nacer ;
Boney, Chris ;
Bensaoula, Abdelhak .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (05) :921-923
[36]   Light absorption enhancement of perovskite solar cells by a modified anti-reflection layer with corrugated void-like nanostructure using finite difference time domain methods [J].
Mulyanti, Budi ;
Anwar, Muhammad Raihan ;
Wulandari, Chandra ;
Hasanah, Lilik ;
Pawinanto, Roer Eka ;
Hamidah, Ida ;
Rusydi, Andrivo .
PHYSICA SCRIPTA, 2023, 98 (06)
[37]   Assessment of different optimized anti-reflection coatings for ZnO/Si heterojunction solar cells [J].
Maqsood, Sameen ;
Ali, Zohaib ;
Ali, Khuram ;
Ishaq, Mubashra ;
Sajid, Muhammad ;
Farhan, Ahmad ;
Rahdar, Abbas ;
Pandey, Sadanand .
CERAMICS INTERNATIONAL, 2023, 49 (23) :37118-37126
[38]   Two-Dimensional Silicene/Silicon Nanosheets: An Emerging Silicon-Composed Nanostructure in Biomedicine [J].
Ma, Lifang ;
Song, Xinran ;
Yu, Yongchun ;
Chen, Yu .
ADVANCED MATERIALS, 2021, 33 (31)
[39]   Benefit of dual layer silicon nitride anti-reflection coating [J].
Kumar, B ;
Pandian, TB ;
Sreekiran, E ;
Narayanan, S .
CONFERENCE RECORD OF THE THIRTY-FIRST IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 2005, 2005, :1205-1208
[40]   Improving the performance of inverted two-dimensional perovskite solar cells by adding an anti-solvent into the perovskite precursor [J].
Liu, Zhihai ;
Wang, Lei ;
Xie, Xiaoyin .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (34) :11882-11889