Two-Dimensional Nanostructure Anti-Reflection Enhancing Performance Silicon Solar Cells

被引:1
作者
Hasanah, Lilik [1 ]
Rahmawati, Yuni [1 ]
Wulandari, Chandra [2 ]
Mulyanti, Budi [3 ]
Pawinanto, Roer Eka [4 ]
Rusydi, Andrivo [5 ]
机构
[1] Univ Pendidikan Indonesia, Phys Study Program, Jl Dr Setiabudhi 229, Bandung 40154, Jawa Barat, Indonesia
[2] Inst Teknol Bandung, Fac Ind Technol, Engn Phys, Ganesha 10, Bandung 40132, Indonesia
[3] Univ Pendidikan Indonesia, Elect Engn Educ Study Program, Jl Dr Setiabudhi 229, Bandung 40154, Jawa Barat, Indonesia
[4] Univ Pendidikan Indonesia, Ind Automat & Robot Engn Educ Study Program, Jl Dr Setiabudhi 229, Bandung 40154, Jawa Barat, Indonesia
[5] Natl Univ Singapore, Dept Phys, Adv Res Initiat Correlated Electron Syst ARiCES, 2 Sci Dr 3, Singapore 117551, Singapore
关键词
Solar cells; Silicon; Nanostructure; PCE; FDTD; CHARGE; EFFICIENCY;
D O I
10.1007/s12633-024-03150-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Embedding an anti-reflection layer to reduce light reflection and suppress charge recombination is a key factor in increasing absorption and power conversion efficiency (PCE). Nanostructures are ideal as anti-reflection materials due to their typically superior optical properties. The shape and size of these nanostructures are important, as optimizing them can enhance and regulate light propagation, optical absorption, and light trapping. In this paper, absorption and electrical calculations were performed using Finite-Difference Time-Domain (FDTD) and CHARGE simulations. We demonstrate the effectiveness of optimizing the shape (nanodisk, sphere, and hemisphere), aspect ratio, diameter, lattice constant, and thickness of the nanostructure. These modifications significantly improved the performance of silicon solar cells, resulting in a PCE increase by 15.27%. The optimal PCE was obtained from modifying anti-reflection using a nanodisk structure with a diameter of 300 nm, a lattice constant of 600 nm, and a thickness of 187.5 nm. The high performance is demonstrated in both optical and electrical properties, with an absorption intensity of 97% and Jsc of 49.77 mA/cm2. These superior results suggest that the proposed TiO2 nanodisk-based silicon solar cells have great potential to enhance silicon solar cell performance.
引用
收藏
页码:6277 / 6286
页数:10
相关论文
共 50 条
[21]   Nanosized Structural Anti-Reflection Layer for Thin Film Solar Cells [J].
Han, Kang-Soo ;
Shin, Ju-Hyeon ;
Kim, Kang-In ;
Lee, Heon .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (02)
[22]   Optimization of Anti-reflection Coatings for Bifacial Solar Cells with Upconversion Layers [J].
Gabr, Ahmed M. ;
Trojnar, Alua H. ;
Wilkins, Matthew ;
Hall, Trevor J. ;
Kleiman, Rafael N. ;
Hinzer, Karin .
2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, :2230-2233
[23]   Anti-reflection coatings for submillimeter silicon lenses [J].
Wheeler, Jordan D. ;
Koopman, Brian ;
Gallardo, Patricio ;
Maloney, Philip R. ;
Brugger, Spencer ;
Cortes-Medellin, German ;
Datta, Rahul ;
Dowell, C. Darren ;
Glenn, Jason ;
Golwala, Sunil ;
McKenney, Chris ;
McMahon, Jeffrey J. ;
Munson, Charles D. ;
Niemack, Mike ;
Parshley, Steven ;
Stacey, Gordon .
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII, 2014, 9153
[24]   Design and optimization of single, double and multilayer anti-reflection coatings on planar and textured surface of silicon solar cells [J].
Valiei, Maryam ;
Shaibani, Parman Mojir ;
Abdizadeh, Hossein ;
Kolahdouz, Mohammadreza ;
Soleimani, Ebrahim Asl ;
Poursafar, Jafar .
MATERIALS TODAY COMMUNICATIONS, 2022, 32
[25]   Influence of anti-reflection coatings on double GaAs/Si heterojunction layers in Si solar cells [J].
Singh, Bhim ;
Gupta, Vivek .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2023, 38 (01)
[26]   Optimization of InGaAs/InGaAsP quantum well solar cells with anti-reflection coating [J].
Qian, Qiangqiang ;
Chen, Jun .
AOPC 2019: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2019, 11338
[27]   InGaAs quantum dots-in-a-well solar cells with anti-reflection coating [J].
Lay, T. S. ;
Lin, Z. H. ;
Chuang, K. Y. ;
Tzeng, T. E. .
JOURNAL OF CRYSTAL GROWTH, 2019, 513 :6-9
[28]   Microstructured anti-reflection surface design for the omni-directional solar cells [J].
Chen, Li ;
Yang, Hongjun ;
Tao, Men ;
Zhou, Weidong .
OPTICAL MODELING AND MEASUREMENTS FOR SOLAR ENERGY SYSTEMS II, 2008, 7046
[29]   An anti-reflection coating for silicon optics at terahertz frequencies [J].
Gatesman, AJ ;
Waldman, J ;
Ji, M ;
Musante, C ;
Yngvesson, S .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (07) :264-266
[30]   Modelling and analysis of high efficiency silicon solar cell using double layers anti-reflection coatings (ARC) [J].
Jamaluddin, Nur Irdina Iwani Mohd ;
Yusoff, Mohd Zaki Mohd ;
Malek, Mohd Firdaus .
MODERN PHYSICS LETTERS B, 2024, 38 (23)