Higher-Order Feedback Computation

被引:0
作者
Aguilera, Juan P. [1 ]
Lubarsky, Robert S. [2 ]
Pacheco, Leonardo [1 ]
机构
[1] TU Wien, Vienna, Austria
[2] Florida Atlantic Univ, Boca Raton, FL 33431 USA
来源
TWENTY YEARS OF THEORETICAL AND PRACTICAL SYNERGIES, CIE 2024 | 2024年 / 14773卷
关键词
Turing computation; Feedback computation; Fixed-point operators;
D O I
10.1007/978-3-031-64309-5_24
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Feedback Turing machines are Turing machines which can query a halting oracle which has information on the convergence or divergence of feedback computations. To avoid a contradiction by diagonalization, feedback Turing machines have two ways of not converging: they can diverge as standard Turing machines, or they can freeze. A natural question to ask is: what about feedback Turing machines which can ask if computations of the same type converge, diverge, or freeze? We define alpha th order feedback Turing machines for each computable ordinal alpha. We also describe feedback computable and semi-computable sets using inductive definitions and Gale-Stewart games.
引用
收藏
页码:298 / 310
页数:13
相关论文
共 16 条
[1]  
Ackerman N.L., Feedback computability on cantor space, V15
[2]   An introduction to feedback Turing computability [J].
Ackerman, Nathanael L. ;
Freer, Cameron E. ;
Lubarsky, Robert S. .
JOURNAL OF LOGIC AND COMPUTATION, 2020, 30 (01) :27-60
[3]   Feedback Turing Computability, and Turing Computability as Feedback [J].
Ackerman, Nathanael L. ;
Freer, Cameron E. ;
Lubarsky, Robert S. .
2015 30TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2015, :523-534
[4]  
Aguilera J.P., Type-2 feedback computability
[5]   Feedback hyperjump [J].
Aguilera, Juan P. ;
Lubarsky, Robert S. .
JOURNAL OF LOGIC AND COMPUTATION, 2021, 31 (01) :20-39
[6]  
Bradfield J, 2005, LECT NOTES COMPUT SC, V3634, P384, DOI 10.1007/11538363_27
[7]  
Bradfield J.C., Fixpoint alternation and the Wadge hierarchy
[8]   The modal mu-calculus alternation hierarchy is strict [J].
Bradfield, JC .
THEORETICAL COMPUTER SCIENCE, 1998, 195 (02) :133-153
[9]   Fixpoints, games and the difference hierarchy [J].
Bradfield, JC .
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2003, 37 (01) :1-15
[10]  
Kozen D., Results on the propositional -calculus, V27, P333, DOI [10.1016/0304-3975(82)90125-6, DOI 10.1016/0304-3975(82)90125-6]