METRICAL PROPERTIES OF WEIGHTED PRODUCTS OF CONSECUTIVE LUROTH DIGITS

被引:0
作者
Brown-Sarre, Adam [1 ]
Robert, Gerardo Gonzalez [1 ]
Hussain, Mumtaz [1 ]
机构
[1] La Trobe Univ, Dept Math & Phys Sci, Bendigo 3552, Australia
来源
HOUSTON JOURNAL OF MATHEMATICS | 2023年 / 49卷 / 04期
基金
澳大利亚研究理事会;
关键词
HAUSDORFF DIMENSION; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Luroth expansion of a real number x is an element of(0,1] is the series x=1/d1+1/d1(d1-1)d2+1/d1(d1-1)d2(d2-1)d3+<middle dot><middle dot><middle dot>, with d(j)is an element of N >= 2 for all j is an element of N. Given m is an element of N, t= (t0,...,tm-1)is an element of Rm-1>0andany function Psi :N ->(1,infinity), define epsilon(t)(Psi) : =nx is an element of(0,1] :dt0n<middle dot><middle dot><middle dot>d(n+m)(tm-1)>=Psi(n) for infinitely many n is an element of N} We establish a Lebesgue measure dichotomy statement (a zero-one law) for epsilon(t)(Psi) under a natural non-removable condition lim in f(n)->infinity Psi(n)>1. Let B be given by log B: = lim in f(n)->infinity log(Psi(n))/n For any m is an element of N, we compute the Hausdorff dimension of epsilon(t)(Psi) when either B= 1 or B=infinity. We also compute the Hausdorff dimension of epsilon(t)(Psi) when1< B <infinity form= 2
引用
收藏
页码:861 / 897
页数:37
相关论文
共 39 条
  • [21] Metrical properties of exponentially growing partial quotients
    Hussain, Mumtaz
    Shulga, Nikita
    FORUM MATHEMATICUM, 2024,
  • [22] The growth speed for the product of consecutive digits in Lüroth expansions
    Qinglong Zhou
    Monatshefte für Mathematik, 2022, 198 : 233 - 248
  • [23] Metrical properties for continued fractions of formal Laurent series
    Hu, Hui
    Hussain, Mumtaz
    Yu, Yueli
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73
  • [24] ASYMPTOTIC BEHAVIOUR FOR PRODUCTS OF CONSECUTIVE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS
    Chen, Xiao
    Fang, Lulu
    Li, Junjie
    Shang, Lei
    Zeng, Xin
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 110 (03) : 448 - 459
  • [25] Multifractal Analysis of Convergence Exponents for Products of Consecutive Partial Quotients in Continued Fractions
    Fang, Lulu
    Ma, Jihua
    Song, Kunkun
    Yang, Xin
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (4) : 1594 - 1608
  • [26] Metric properties of the product of consecutive partial quotients in continued fractions
    Huang, Lingling
    Wu, Jun
    Xu, Jian
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (02) : 901 - 943
  • [27] Kurzweil type metrical Diophantine properties in the field of formal Laurent series
    Kim, Dong Han
    Tan, Bo
    Wang, Baowei
    Xu, Jian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) : 250 - 262
  • [28] WEIGHTED COMPOSITION OPERATORS AND THEIR PRODUCTS ON L2(Σ)
    Jabbarzadeh, M. R.
    Gheytaran, M.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (02): : 291 - 305
  • [29] Limit theorems for sums of products of consecutive partial quotients of continued fractions
    Hu, Hui
    Hussain, Mumtaz
    Yu, Yueli
    NONLINEARITY, 2021, 34 (12) : 8143 - 8173
  • [30] FUZZY WEIGHTED AVERAGE AS A FUZZIFIED AGGREGATION OPERATOR AND ITS PROPERTIES
    Pavlacka, Ondaej
    Pavlackova, Martina
    Hetfleis, Vladislav
    KYBERNETIKA, 2017, 53 (01) : 137 - 160