METRICAL PROPERTIES OF WEIGHTED PRODUCTS OF CONSECUTIVE LUROTH DIGITS

被引:0
作者
Brown-Sarre, Adam [1 ]
Robert, Gerardo Gonzalez [1 ]
Hussain, Mumtaz [1 ]
机构
[1] La Trobe Univ, Dept Math & Phys Sci, Bendigo 3552, Australia
来源
HOUSTON JOURNAL OF MATHEMATICS | 2023年 / 49卷 / 04期
基金
澳大利亚研究理事会;
关键词
HAUSDORFF DIMENSION; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Luroth expansion of a real number x is an element of(0,1] is the series x=1/d1+1/d1(d1-1)d2+1/d1(d1-1)d2(d2-1)d3+<middle dot><middle dot><middle dot>, with d(j)is an element of N >= 2 for all j is an element of N. Given m is an element of N, t= (t0,...,tm-1)is an element of Rm-1>0andany function Psi :N ->(1,infinity), define epsilon(t)(Psi) : =nx is an element of(0,1] :dt0n<middle dot><middle dot><middle dot>d(n+m)(tm-1)>=Psi(n) for infinitely many n is an element of N} We establish a Lebesgue measure dichotomy statement (a zero-one law) for epsilon(t)(Psi) under a natural non-removable condition lim in f(n)->infinity Psi(n)>1. Let B be given by log B: = lim in f(n)->infinity log(Psi(n))/n For any m is an element of N, we compute the Hausdorff dimension of epsilon(t)(Psi) when either B= 1 or B=infinity. We also compute the Hausdorff dimension of epsilon(t)(Psi) when1< B <infinity form= 2
引用
收藏
页码:861 / 897
页数:37
相关论文
共 39 条
  • [1] Metrical properties of products formed by consecutive partial quotients in Luroth expansions
    Feng, Yan
    Jiang, Fuming
    CHAOS SOLITONS & FRACTALS, 2025, 191
  • [2] The growth speed for the product of consecutive digits in Luroth expansions
    Zhou, Qinglong
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 233 - 248
  • [3] Exceptional sets related to the product of consecutive digits in Luroth expansions
    Wang, Jin-Feng
    Zhou, Qing-Long
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 104 (3-4): : 279 - 314
  • [4] On the Distribution of the Digits in Luroth Expansions
    Zhou, Qing-Long
    LITHUANIAN MATHEMATICAL JOURNAL, 2022, 62 (01) : 123 - 132
  • [5] Dimension theory of Luroth digits
    Feng, Y.
    Zhou, Q. L.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (01) : 150 - 167
  • [6] THE GROWTH RATE OF THE DIGITS IN THE LUROTH EXPANSIONS
    Lu, Meiying
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (04)
  • [7] A note on the largest digits in Luroth expansion
    Shen, Luming
    Yu, Yiying
    Zhou, Yuxin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (04) : 1015 - 1023
  • [8] METRICAL PROPERTIES FOR THE WEIGHTED PRODUCTS OF MULTIPLE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS
    Bakhtawar, Ayreena
    Hussain, Mumtaz
    Kleinbock, Dmitry
    Wang, Bao-Wei
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (01): : 159 - 194
  • [9] The relative growth rate for the digits in Luroth expansions
    Tan, Xiaoyan
    Zhang, Zhenliang
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (05) : 557 - 562
  • [10] Level sets of partial maximal digits for Luroth expansion
    Song, Kunkun
    Fang, Lulu
    Ma, Jihua
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (10) : 2773 - 2786